Multi-core SPEC CPU2006

For the record, we do not believe that the SPEC CPU "Rate" metric has much value for estimating server CPU performance. Most applications do not run lots of completely separate processes in parallel; there is at least some interaction between the threads. But since the benchmark below caused so much discussion, we wanted to satisfy the curiosity of our readers. 

Does the EPYC7601 really have 47% more raw integer power? Let us find out. Though please note that you are looking at officially invalid base SPEC rate runs, as we still have to figure out how to tell the SPEC software that our "invalid" flag "-Ofast" is not invalid at all. We did the required 3 iterations though. 

Subtest Application type Xeon
E5-2699 v4
@ 2.8
Xeon
8176
@ 2.8
EPYC
7601
@2.7
EPYC 
Vs
Broadwell EP
EPYC 
vs
Skylake
SP
400.perlbench Spam filter 1470 1980 2020 +37% +2%
401.bzip2 Compression 860 1120 1280 +49% +14%
403.gcc Compiling 960 1300 1400 +46% +8%
429.mcf Vehicle scheduling 752 927 837 +11% -10%
445.gobmk Game AI 1220 1500 1780 +46% +19%
456.hmmer Protein seq. analyses 1220 1580 1700 +39% +8%
458.sjeng Chess 1290 1570 1820 +41% +16%
462.libquantum Quantum sim 545 870 1060 +94% +22%
464.h264ref Video encoding 1790 2670 2680 +50% -0%
471.omnetpp Network sim 625 756 705 (*) +13% -7%
473.astar Pathfinding 749 976 1080 +44% +11%
483.xalancbmk XML processing 1120 1310 1240 +11% -5%

(*) We had to run 471.omnetpp with 64 threads on EPYC: when running at 128 threads, it gave errors. Once solved, we expect performance to be 10-20% higher. 

Ok, first a disclaimer. The SPECint rate test is likely unrealistic. If you start up 88 to 128 instances, you create a massive bandwidth bottleneck and a consistent CPU load of 100%, neither of which are very realistic in most integer applications. You have no synchronization going on, so this is really the ideal case for a processor such as the AMD EPYC 7601. The rate test estimates more or less the peak integer crunching power available, ignoring many subtle scaling problems that most integer applications have.  

Nevertheless, AMD's claim was not farfetched. On average, and using a "neutral" compiler with reasonable compiler settings, the AMD 7601 has about 40% (42% if you take into account that our Omnetpp score will be higher once we fixed the 128 instances issue) more "raw" integer processing power than the Xeon E5-2699 v4, and is even about 6% faster than the Xeon 8176. Don't expect those numbers to be reached in most real integer applications though. But it shows how much progress AMD has made nevertheless...

SMT Integer Performance With SPEC CPU2006 Multi-Threaded Integer Performance
Comments Locked

219 Comments

View All Comments

  • Kaotika - Tuesday, July 11, 2017 - link

    http://www.anandtech.com/show/11464/intel-announce...
    This one remains wrong though
  • Ian Cutress - Tuesday, July 11, 2017 - link

    Always reference the newest piece, especially the main review.
    Or we'd spend half of our time going back and updating old pieces and reviews with new data.
  • scottb9239 - Tuesday, July 11, 2017 - link

    On the POV-RAY benchmark, shouldn't that read as almost 16% faster than the dual 2699 v4 and 32% faster than the dual 8176?
  • scienceomatica - Tuesday, July 11, 2017 - link

    I think that a fair game would be to compare the top offer of one and the other manufacturer, in other words, the Xeon 8180 should be included in the benchmark regardless of the aspect of the price. Then the difference would be quite in favor of the Intel processor, although it has few cores less.
  • Tamz_msc - Tuesday, July 11, 2017 - link

    Will we get to see more FP HPC-oriented workloads like SPECfp2006 or even 2017 being discussed in a future article?
  • lefty2 - Tuesday, July 11, 2017 - link

    I can summarize this article: "$8719 chip beaten by $4200 chip in everything except database and Appache spark."
    Well done Intel, another Walletripper!
  • Shankar1962 - Wednesday, July 12, 2017 - link

    Then why did google att aws etc upgraded to skylake. They could have saved billions of dollars.
  • Shankar1962 - Wednesday, July 12, 2017 - link

    Look at what big players upgrading to skylake reported
    These are real workloads
    No one cares about labs
    These numbers decide who wins and who loses
    No wonder AMD sells at $4200

    https://www.google.com/amp/s/seekingalpha.com/amp/...
  • nitrobg - Tuesday, July 11, 2017 - link

    Pricing on page 10 should reflect that the 2P EPYC prices are for 2 processors, not per CPU. The price of Xeons is per CPU.
  • coder543 - Tuesday, July 11, 2017 - link

    That doesn't seem true. The prices they currently have seem to be correct. Got a source?

Log in

Don't have an account? Sign up now