Energy Consumption

We tested the energy consumption of our servers for a one-minute period in several scenario. The first scenario is the point where the server under testing performs best in MySQL: the highest throughput just before the response time goes up significantly. 

To test the power usage of the FPU, we measure the power consumption when POV-Ray was using all available threads. 

SKU TDP
(on paper)
spec
Idle
Server

W
MySQL
Best Throughput
at Lowest Resp. Time (*)
(W)
POV-Ray
100% CPU load
Dual Xeon E5-2699 v4 2x145 W 106 412 425
Dual Xeon 8176  2x165W 190 300 453
Dual EPYC 7601 2x180W 151 321 327

Both the Xeon 8176 and Dual EPYC server had a few more additional components (a separate 10 GBe card for example) than the Dual Xeon E5-2699v4 system, but that does not fully explain why idle power is so much higher, especially on the Dual Xeon 8176. We lacked the time to fully investigate this, and the last two systems have relatively new firmware.

The only conclusion that we can draw so far, is that the EPYC 7601 is likely to draw more power when running integer applications, while the rather wide FP units of the Intel CPUs are real power hogs even if they do not run heavy AVX applications. To be continued...

Floating Point performance Closing Thoughts
POST A COMMENT

219 Comments

View All Comments

  • ddriver - Wednesday, July 12, 2017 - link

    LOL, buthurt intel fanboy claims that the only unbiased benchmark in the review is THE MOST biased benchmark in the review, the one that was done entirely for the puprpose to help intel save face.

    Because if many core servers running 128 gigs of ram are primarily used to run 16 megabyte databases in the real world. That's right!
    Reply
  • Beany2013 - Tuesday, July 11, 2017 - link

    Sure, test against Ubuntu 17.04 if you only plan to have your server running till January. When it goes end of life. That's not a joke - non LTS Ubuntu released get nine months patches and that's it.

    https://wiki.ubuntu.com/Releases

    16.04 is supported till 2021, it's what will be used in production by people who actually *buy* and *use* servers and as such it's a perfectly representative benchmark for people like me who are looking at dropping six figures on this level of hardware soon and want to see how it performs on...goodness, realistic workloads.
    Reply
  • rahvin - Wednesday, July 12, 2017 - link

    This is a silly argument. No one running these is going to be running bleeding edge software, compiling special kernels or putting optimizing compiler flags on anything. Enterprise runs on stable verified software and OS's. Your typical Enterprise Linux install is similar to RHEL 6 or 7 or it's variants (some are still running RHEL 5 with a 2.6 kernel!). Both RHEL6 and 7 have kernels that are 5+ years old and if you go with 6 it's closer to 10 year old.

    Enterprises don't run bleeding edge software or compile with aggressive flags, these things create regressions and difficult to trace bugs that cost time and lots of money. Your average enterprise is going to care about one thing, that's performance/watt running something like a LAMP stack or database on a standard vanilla distribution like RHEL. Any large enterprise is going to take a review like this and use it as data point when they buy a server and put a standard image on it and test their own workloads perf/watt.

    Some of the enterprises who are more fault tolerant might run something as bleeding edge as an Ubuntu Server LTS release. This review is a fair review for the expected audience, yes every writer has a little bias but I'd dare you to find it in this article, because the fanboi's on both sides are complaining that indicates how fair the review is.
    Reply
  • jjj - Tuesday, July 11, 2017 - link

    Do remember that the future is chiplets, even for Intel.
    The 2 are approaching that a bit differently as AMD had more cost constrains so they went with a 4 cores CCX that can be reused in many different prods.

    Highly doubt that AMD ever goes back to a very large die and it's not like Intel could do a monolithic 48 cores on 10nm this year or even next year and that would be even harder in a competitive market. Sure if they had a Cortex A75 like core and a lot less cache, that's another matter but they are so far behind in perf/mm2 that it's hard to even imagine that they can ever be that efficient.
    Reply
  • coder543 - Tuesday, July 11, 2017 - link

    Never heard the term "chiplet" before. I think AMD has adequately demonstrated the advantages (much higher yield -> lower cost, more than adequate performance), but I haven't heard Intel ever announce that they're planning to do this approach. After the embarrassment that they're experiencing now, maybe they will. Reply
  • Ian Cutress - Tuesday, July 11, 2017 - link

    Look up Intel's EMIB. It's an obvious future for that route to take as process nodes get smaller. Reply
  • Threska - Saturday, July 22, 2017 - link

    We may see their interposer (like used with their GPUs) technology being used. Reply
  • jeffsci - Tuesday, July 11, 2017 - link

    Benchmarking NAMD with pre-compiled binaries is pretty silly. If you can't figure out how to compile it for each every processor of interest, you shouldn't be benchmarking it. Reply
  • CajunArson - Tuesday, July 11, 2017 - link

    On top of all that, they couldn't even be bothered to download and install a (completely free) vanilla version that was released this year. Their version of NAMD 2.10 is from *2014*!

    http://www.ks.uiuc.edu/Development/Download/downlo...
    Reply
  • tamalero - Tuesday, July 11, 2017 - link

    Do high level servers update their versions constantly?
    I know that most of the critical stuff, only patch serious vulnerabilities and not update constantly to newer things just because they are available.
    Reply

Log in

Don't have an account? Sign up now