AMD’s EPYC 7000-Series Processors

As announced back at the official launch, AMD is planning to hit both the dual socket and single socket markets. With up to 32 cores, 64 threads, 2TB/socket support and 128 PCIe lanes per CPU, they believe that by offering a range of core counts and frequencies, they have the nous to attack Intel, even if it comes at a slight IPC disadvantage.

AMD’s main focus will be on the 2P parts, where each CPU will use 64 PCIe lanes (using the Infinity Fabric protocol) to connect to each other, meaning that in a 2P system there will still be 128 PCIe 3.0 lanes to go around for add-in devices. There will be the top four SKUs available initially, and the other parts should be in the hands of OEMs by the end of July. All the CPUs will have access to all 64MB of the L3 cache, except the 7200-series which will have access to half.

The new processors from AMD are called the EPYC 7000 series, with names such as EPYC 7301 and EPYC 7551P. The naming of the CPUs is as follows:

EPYC 7551P

  • EPYC = Brand
  • = 7000 Series
  • 30/55 = Dual Digit Number indicative of stack positioning / performance (non-linear)
  • 1 = Generation
  • P = Single Socket, not present in Dual Socket

So in the future, we will see second generation ‘EPYC 7302’ processors, or if AMD scales out the design there may be EPYC 5000 processors with fewer silicon dies inside, or EPYC 3000 with a single die but for the EPYC platform socket (obviously, those last two are speculation).

But starting with the 2P processors:

AMD EPYC Processors (2P)
  Cores
Threads
Frequency (GHz) L3 DRAM PCIe TDP Price
Base All Max
EPYC 7601 32 / 64 2.20 2.70 3.2 64 MB 8-Ch
DDR4
2666
MT/s
8 x16
128
PCIe
180W $4200
EPYC 7551 32 / 64 2.00 2.55 3.0 180W >$3400
EPYC 7501 32 / 64 2.00 2.60 3.0 155W/170W $3400
EPYC 7451 24 / 48 2.30 2.90 3.2 180W >$2400
EPYC 7401 24 / 48 2.00 2.80 3.0 155W/170W $1850
EPYC 7351 16 / 32 2.40 2.9 155W/170W >$1100
EPYC 7301 16 / 32 2.20 2.7 155W/170W >$800
EPYC 7281 16 / 32 2.10 2.7 32 MB 155W/170W $650
EPYC 7251 8 / 16 2.10 2.9 120W $475

The top part is the EPYC 7601, which is the CPU we were provided for in this comparison. This is a 32-core part with simultaneous multithreading, a TDP of 180W and a tray price of $4200. As the halo part, it also gets the good choice on frequencies: 2.20 GHz base, 3.2 GHz at max turbo (up to 12 cores active) and 2.70 GHz when all cores are active.

Moving down the stack, AMD will offer 24, 16 and 8-core parts. These will disable 1, 2 and 3 cores per CCX respectively, as we saw with the consumer Ryzen processors, and is done in order to keep core-to-core latencies more predictable (as well as keeping access to all the L3 cache). What is interesting to note is that AMD will offer a 32-core part at 155W (when using DDR4-2400) for $3400, which is expected to be very competitive compared to Intel (and support 2.66x more DRAM per CPU). 

The 16-core EPYC 7281, while having half the L3, will be available for $650, making an interesting 2P option. Even the bottom processor at the stack, the 8-core EPYC 7251, will support the full 2TB of DRAM per socket as well as 128 PCIe lanes, making it a more memory focused SKU and having almost zero competition on these sorts of builds from Intel. For software that requires a lot of memory but pays license fees per core/socket, this is a nice part.

For single socket systems, AMD will offer the following three processors:

AMD EPYC Processors (1P)
  Cores
Threads
Frequency (GHz) L3 DRAM PCIe TDP Price
Base All Max
EPYC 7551P 32 / 64 2.0 2.6 3.0 64 MB 8-Ch
DDR4
2666
MT/s
8 x16
128
PCIe
180W $2100
EPYC 7401P 24 / 48 2.0 2.8 3.0 155W/170W $1075
EPYC 7351P 16 / 32 2.4 2.9 155W/170W $750

These processors mirror the specifications of the 2P counterparts, but have a P in the name and slightly different pricing.

AMD's EPYC Server CPU Introducing Skylake-SP
POST A COMMENT

219 Comments

View All Comments

  • ddriver - Tuesday, July 11, 2017 - link

    Gotta love the "you don't care about the xeon prices" part thou. Now that intel don't have a performance advantage, and their product value at the high end is half that of amd, AT plays the "intel is the better brand" card. So expected... Reply
  • OZRN - Wednesday, July 12, 2017 - link

    You need some perspective. Database licensing for Oracle happens per core, where Intel's performance is frequently better in a straight line and since they achieve it on lower core count it's actually better value for the use case. Higher per-CPU cost is not so much of a concern when you pay twice as much for a processor license to cover those cores.

    I'm an AMD fan and I made this account just for you, sweetheart, but don't blind yourself to the truth just because Intel has a history of shady business. In most regards this is a balanced review, and where it isn't, they tell you why it might not be. Chill out.
    Reply
  • ddriver - Thursday, July 13, 2017 - link

    You are such a clown. Nobody, I repeat, NOBODY on this planet uses 64 core 128 thread 512 gigabytes of ram servers to run a few MB worth of database. You telling me to get pespective thus can mean only two things, that you are a buthurt intel fanboy troll or that you are in serious need of head examination. Or maybe even both. At any rate, that perfectly explains your ridiculously low standards for "balanced review". Reply
  • Notmyusualid - Friday, July 14, 2017 - link

    It seems no matter what opinion someone presents that might exhibit Intel in a better light - you are going to hate it anyway.

    What a life you must lead.
    Reply
  • OZRN - Friday, July 14, 2017 - link

    No, they don't. They use them to host gigabytes to terabytes worth of mission critical databases, with specified amounts of cores dedicated to seperate environments of hard partitioned data manipulation. I've done some quick math for you and in an average setup of Enterprise Edition of Oracle DB, with only the usually reported options and extras, this type of database would cost over $3.7m to run on *64 cores alone*. At this point, where is your hardware sunk costs argument?

    Also, I don't think anyone here is impressed by your ability to immediately personally insult people making valid points. Good luck finding your head that deep in your colon.
    Reply
  • CajunArson - Tuesday, July 11, 2017 - link

    "All of our testing was conducted on Ubuntu Server "Xenial" 16.04.2 LTS (Linux kernel 4.4.0 64 bit). The compiler that ships with this distribution is GCC 5.4.0."

    I'd recommend using a more updated distro and especially a more up to date compiler (GCC 5.4 is only a bug-fix release of a compiler from *2015*) if you want to see what these parts are truly capable of.

    Phoronix does heavy-duty Linux reviews and got some major performance boosts on the i9 7900X simply by using up to date distros: http://www.phoronix.com/scan.php?page=article&...

    Considering that Purley is just an upscaled version of the i9 7900X, I wouldn't be surprised to see different results.
    Reply
  • CajunArson - Tuesday, July 11, 2017 - link

    As a followup to my earlier comment, that Phoronix story, for example, shows a speedup factor of almost 5X on the C-ray benchmark simply by using a modern distro with some tuning for the more modern Skylake architecture.

    I'm not saying Purley would have a 5X speedup on C-ray per-say, but I'd be shocked if it didn't get a good boost using modern software that's actually designed for the Skylake architecture.
    Reply
  • CoachAub - Wednesday, July 12, 2017 - link

    Keywords: "actually designed for the Skylake architecture". Will there be optimizations for AMD Epyc chips? Reply
  • mkozakewich - Friday, July 14, 2017 - link

    If it's a reasonable optimization, it makes sense to include it in the benchmark. If I were building these systems, I'd want to see benchmarks that resembled as closely as possible my company's workflow. (Which may be for older software or newer software; neither are inherently more relevant, though benchmarks on newer software will usually be relevant further into the future.) Reply
  • CajunArson - Tuesday, July 11, 2017 - link

    And another followup: The time kernel compilation on the i9 7900X got almost a factor of 2 speedup over the Ubuntu 16.04 using more modern distros. Reply

Log in

Don't have an account? Sign up now