Multi-core SPEC CPU2006

For the record, we do not believe that the SPEC CPU "Rate" metric has much value for estimating server CPU performance. Most applications do not run lots of completely separate processes in parallel; there is at least some interaction between the threads. But since the benchmark below caused so much discussion, we wanted to satisfy the curiosity of our readers. 

Does the EPYC7601 really have 47% more raw integer power? Let us find out. Though please note that you are looking at officially invalid base SPEC rate runs, as we still have to figure out how to tell the SPEC software that our "invalid" flag "-Ofast" is not invalid at all. We did the required 3 iterations though. 

Subtest Application type Xeon
E5-2699 v4
@ 2.8
Xeon
8176
@ 2.8
EPYC
7601
@2.7
EPYC 
Vs
Broadwell EP
EPYC 
vs
Skylake
SP
400.perlbench Spam filter 1470 1980 2020 +37% +2%
401.bzip2 Compression 860 1120 1280 +49% +14%
403.gcc Compiling 960 1300 1400 +46% +8%
429.mcf Vehicle scheduling 752 927 837 +11% -10%
445.gobmk Game AI 1220 1500 1780 +46% +19%
456.hmmer Protein seq. analyses 1220 1580 1700 +39% +8%
458.sjeng Chess 1290 1570 1820 +41% +16%
462.libquantum Quantum sim 545 870 1060 +94% +22%
464.h264ref Video encoding 1790 2670 2680 +50% -0%
471.omnetpp Network sim 625 756 705 (*) +13% -7%
473.astar Pathfinding 749 976 1080 +44% +11%
483.xalancbmk XML processing 1120 1310 1240 +11% -5%

(*) We had to run 471.omnetpp with 64 threads on EPYC: when running at 128 threads, it gave errors. Once solved, we expect performance to be 10-20% higher. 

Ok, first a disclaimer. The SPECint rate test is likely unrealistic. If you start up 88 to 128 instances, you create a massive bandwidth bottleneck and a consistent CPU load of 100%, neither of which are very realistic in most integer applications. You have no synchronization going on, so this is really the ideal case for a processor such as the AMD EPYC 7601. The rate test estimates more or less the peak integer crunching power available, ignoring many subtle scaling problems that most integer applications have.  

Nevertheless, AMD's claim was not farfetched. On average, and using a "neutral" compiler with reasonable compiler settings, the AMD 7601 has about 40% (42% if you take into account that our Omnetpp score will be higher once we fixed the 128 instances issue) more "raw" integer processing power than the Xeon E5-2699 v4, and is even about 6% faster than the Xeon 8176. Don't expect those numbers to be reached in most real integer applications though. But it shows how much progress AMD has made nevertheless...

SMT Integer Performance With SPEC CPU2006 Multi-Threaded Integer Performance
Comments Locked

219 Comments

View All Comments

  • twtech - Thursday, July 20, 2017 - link

    I'd really like to see some compile-time benchmarks for these CPUs.

    For my own particular interests, time taken to do a full recompile of the Unreal 4 engine from source would be very useful. But even something more generic like the Linux kernel compiles per hour benchmark could serve as a useful point of reference.
  • szupek - Friday, July 21, 2017 - link

    Meanwhile, the entire world still runs on IBM's DB2 for Datbases and IBM's Z/AS400 Mainframes. The fastest database in the world, by far...oh and the most secure (it's only hackable by standing in front of the console, seriously). Every single credit card transaction. Every single plain ticket. Most medical records and all of wall street. Yup. IBM still owns. So much that most of commenters probably have no idea just how big IBM truly is. If you care about Database speed & security, these processors shouldn't appeal to you.
  • stevefan1999 - Saturday, July 22, 2017 - link

    It's impossible for AMD to win completely.

    Remember kids, public cloud service providers such as Amazon(AWS), Google(GCP) and Joyent would still stick with Intel due to not only the compatibility issues like ecosystem and vendor inconsistency, but also the VM migration and security and module issues, all mentioned in the presentation slides presented by Intel. They are a very serious matter, as they, the public cloud services, are powering the Internet we use everyday, so being stable, consistent and be able to serve a good amount of SLA is vital to the public cloud, we wouldn't expect them to play with the new lad in the hood, the EPYC.

    IIRC only the Microsoft(Azure) are using AMD server CPUs partially in some of their datacenters, running various Linux and Windows VMs using Hyper-V, and they have been performing quite well

    The cloud services are exploding every year, but with what I've said, I doubt AMD could even kick in the first door at least for 3 to 4 years. This is still a big-win for Intel and what manipulations will Intel do I don't know.

    On the other hand, Intel has failed to service the desktop market and they're figuring out how to hold their asses on the Internet infrastructure, never had them know the crusade of EPYC will come this fast.

    The server market is quite a big meat, it's a 21 bil market, cool right? But that you will have guaranteed 'server upgrade' every year, is a bigger matter, as those server CPUs are designated to be disposed given the wattage and performance per dollar is lower on the newer CPUs. Those god-damn server operators will keen to replace their CPU (and therefore some serious metal pollution issues). Intel has been exploiting this and gained a big hurdle of money and therefore had their ecosystem grown. This is how Intel defends their platform by vendor lock-in, pathetic.

    AMD is now being performance and cost competitive to Intel, but it's still dead in the High Performance Computing campaign unless AMD could provide higher frequencies. Well I have to say I know nothing about HPC, but I remembered the Bulldozer architecture of AMD is actually targeted and marketed for HPC! That's why AMD failed in general-purpose computing market and started the downfall of AMD/Domination of Intel 5 years ago. Even though we know the fate of Bulldozer, but hopefully AMD could still scrap some of the HPC goodies of Bulldozer out and benefits the mankind by accelerating researches such as finding the cures for cancer or solving some precise physics and mathematics.

    Well, anyway the cloud, the HPC and the server market are the last resort for Intel and they will definitely hold their last ground. Good luck AMD on crushing the mean and obese Intel!
  • errorr - Sunday, July 23, 2017 - link

    For all the talk about speed and efficiency the problem is about $$$. The sad fact is that what matters most isn't even the price of the cpus which is chump change in the grand scheme of things but how the software licensing costs are determined. Per core or per socket software pricing will matter a lot. The software companies will decide how successful EPYC is. I have a feeling they will be biased slightly toward AMD at the beginning as it is in their interest to foster competition for Intel, or if they are not forward looking enough the end customers might argue that the competition will benefit the SW companies in the long run by continuing to push competition.
  • msroadkill612 - Thursday, July 27, 2017 - link

    Whatever, its all pointless if the competition can read your secrets, which is a matter very close to the hearts of the cheque signers.

    AMD seem to have something very superior to offer in that department.
  • qweqwe - Tuesday, August 8, 2017 - link

    we just did some heavy inhouse hpc-tests with epyc against diff. intel servers.
    the epyc is the clear winner in terms of performance and power consumption when it
    comes to hand-tuned parallel-vector-code examples.
    not bad amd !
  • readonly1 - Friday, October 27, 2017 - link

    qweqwe, I totally agree with you. Our inhouse HPC tests get the similar conclusion, after comparing AMD Epyc 7351 (dual socket, 32 cores, 2400Mhz) and Intel SKylake 6154 (dual socket, 36 cores, 3000Mhz). I think AMD clearly wins in the memory bandwidth, which is extremely important for HPC computation.
  • msroadkill612 - Monday, November 13, 2017 - link

    7/11/2017 "Microsoft is already deploying AMD's EPYC in their Azure Cloud Datacenters."

    Interesting. As i have been theorising, a possible reason for the absence of retail epyc is not supply, but demand.

    A single sale can soak up production runs.

    If so tho, not much sign of big revenues from it yet, but there are other explanations for that. Contra processors for development work e.g.
  • q.epsilon.p - Sunday, June 10, 2018 - link

    power consumption numbers with every benchmark would have been nice, because these parts are server benchmarks, Perf / Watt is one of the primary concerns. And where AMD kinda crush Intel, because it's isn't exactly being honest with it's TDP values nowadays when it comes to Data Centre and HEDT.

    TDP was traditionally the absolute maximum the CPU would put out as heat, now with a power consumption of 670W I am assuming that the heat being put out by the CPU is more than 165W.

Log in

Don't have an account? Sign up now