Testing Notes

For the EPYC launch, AMD sent us their best SKU: the EPYC 7601. Meanwhile Intel gave us a choice between the top bin Xeon 8180 and the Xeon 8176. Considering that the latter had 165-173W TDP, similar to AMD's best EPYC, we felt that the Xeon 8176 was the best choice. 

Unfortunately, our time testing the two platforms has been limited. In particular, we only received AMD's EPYC system last week, and the company did not put an embargo on the results. This means that we can release the data now, in time to compare it to the new Skylake-SP Xeons, however it also means that we've only had a handful of days to work with the platform before writing all of this up for today's embargo. We're confident in the data, but it means that we haven't had a chance to tease out the nuances of EPYC quite yet, and that will have to be something we get to in a future article.

Meanwhile we should note that we've had to retire the bulk of our historical benchmark data, as we upgraded both our compiler and OS (see below). Due to this, we only had a very limited amount of time to run additional systems, and for that reason we've opted include Intel's Xeon E5-2690. The Sandy Bridge-EP processor is about 5 years old, and for customers who aren't upgrading their servers every single generation, it's these servers that we believe are most likely to get upgraded in this round. So for server managers looking at finally buying into new hardware, you can get an idea of much return of investment you get. 

Benchmark Configuration and Methodology

All of our testing was conducted on Ubuntu Server "Xenial" 16.04.2 LTS (Linux kernel  4.4.0 64 bit). The compiler that ships with this distribution is GCC 5.4.0. 

You will notice that the DRAM capacity varies among our server configurations. The reason is that we had little time left before today's launch embargo. Removing any hardware is always a risk, so we decided to run our tests without significantly changing the internal hardware of the systems we received from AMD and Intel (SSDs were still replaced). As far as we know, all of our tests fit in 128 GB, so DRAM capacity should not have much influence on performance. But it wil have a impact on total energy consumption, which we will discuss. 

Last but not least, we want to note how the performance graphs have been color-coded. Orange is AMD's EPYC, dark blue is Intel's best (Skylake-SP), and light blue is the previous generation Xeons (Xeon E5-v4) . Gray has been used for the soon-to-be-replaced Xeon v1. 

Intel's Xeon "Purley" Server – S2P2SY3Q (2U Chassis)

CPU Two Intel Xeon Platinum 8176  (2.1 GHz, 28c, 38.5MB L3, 165W)
RAM 384 GB (12x32 GB) Hynix DDR4-2666
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3710 800 GB (data)
Motherboard Intel S2600WF (Wolf Pass baseboard)
Chipset Intel Wellsburg B0
BIOS version 9/02/2017
PSU 1100W PSU (80+ Platinum)

The typical BIOS settings can be seen below; we enabled hyperthreading and Intel virtualization. 

AMD EPYC 7601 –  (2U Chassis)

Five years after our "Piledriver review", a new AMD server arrives in the Sizing Servers Lab

CPU Two EPYC 7601  (2.2 GHz, 32c, 8x8MB L3, 180W)
RAM 512 GB (16x32 GB) Samsung DDR4-2666 @2400
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3710 800 GB (data)
Motherboard AMD Speedway
BIOS version To check. 
PSU 1100W PSU (80+ Platinum)

 

Intel's Xeon E5 Server – S2600WT (2U Chassis)

CPU Two Intel Xeon processor E5-2699v4 (2.2 GHz, 22c, 55MB L3, 145W)
Two Intel Xeon processor E5-2690v3 (2.3 GHz, 14c, 35MB L3, 120W)
RAM 256 GB (16x16GB) Kingston DDR-2400
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3700 800 GB (data)
Motherboard Intel Server Board Wildcat Pass
BIOS version 1/28/2016
PSU Delta Electronics 750W DPS-750XB A (80+ Platinum)

The typical BIOS settings can be seen below. 

HP-G8 (2U Chassis) - Xeon E5-2690

CPU Two Intel Xeon processor E5-2690 (2.9GHz, 8c, 20MB L3, 135W)
RAM 512 GB (16x32GB) Samsung DDR-3 LR-DIMM 1866 MHz @ 1333 MHz
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3700 800 GB (data)
Motherboard HP G8
BIOS version 9/23/2016
PSU HP 750W (Gold)

 

Other Notes

Both servers are fed by a standard European 230V (16 Amps max.) power line. The room temperature is monitored and kept at 23°C by our Airwell CRACs.

Pricing Comparison: AMD versus Intel Memory Subsystem: Bandwidth
Comments Locked

219 Comments

View All Comments

  • Shankar1962 - Thursday, July 13, 2017 - link

    So you think Intel won't release anything new again by then? Intel would be ready for cascadelake by then. None of the big players won't switch to AMD. Skylake alone is enough to beat epyc handsomely and cascadelake will just blow epyc. Its funny people are looking at lab results when real workloads are showing 1.5-1.7x speed improvement
  • PixyMisa - Saturday, July 15, 2017 - link

    This IS comparing AMD to Intel's newest CPUs, you idiot. Skylake loses to Epyc outright on many workloads, and is destroyed by Epyc on TCO.
  • Shankar1962 - Sunday, July 16, 2017 - link

    Mind your language asshole
    Either continue the debate or find another place for your shit and ur language
    Real workloads don't happen in the labs you moron
    Real workloads are specific to each company and Intel is ahead either way
    If you have the guts come out with Q3 Q4 2017 and 2018 revenues from AMD
    If you come back debating epyc won over skylake if AMD gets 5-10% share then i pity your common sense and your analysis
    You are a bigger idiot because you spoiled a healthy thread where people were taking sides by presenting technical perspective
  • PixyMisa - Tuesday, July 25, 2017 - link

    I'm sorry you're an idiot.
  • Shankar1962 - Thursday, July 13, 2017 - link

    Does not matter. We can debate this forever but Intel is just ahead and better optimized for real world workloads. Nvidia i agree is a potential threat and ahead in AI workloads which is the future but AMD is just an unnecessary hype. Since the fan boys are so excited with lab results (funny) lets look at Q3,Q4 results to see how many are ordering to test it for future deployment.
  • martinpw - Wednesday, July 12, 2017 - link

    I'm curious about the clock speed reduction with AVX-512. If code makes use of these instructions and gets a speedup, will all other code slow down due to lower overall clock speeds? In other words, how much AVX-512 do you have to use before things start clocking down? It feels like it might be a risk that AVX-512 may actually be counterproductive if not used heavily.
  • msroadkill612 - Wednesday, July 12, 2017 - link

    (sorry if a repost)

    Well yeah, but this is where it starts getting weird - 4-6 vega gpuS, hbm2 ram & huge raid nvme , all on the second socket of your 32 core, c/gpu compute ~Epyc server:

    https://marketrealist.imgix.net/uploads/2017/07/A1...

    from

    http://marketrealist.com/2017/07/how-amd-plans-to-...

    All these fabric linked processors, can interact independently of the system bus. Most data seems to get point to point in 2 hops, at about 40GBps bi-directional (~40 pcie3 lanes, which would need many hops), and can be combined to 160GBps - as i recall.

    Suitably custom hot rodded for fabric rather than pcie3, the nvme quad arrays could reach 16MBps sequential imo on epycs/vegaS native nvme ports.

    To the extent that gpuS are increasing their role in big servers, intel and nvidea simply have no answer to amd in the bulk of this market segment.
  • davide445 - Wednesday, July 12, 2017 - link

    Finally real competition in the HPC market. Waiting for the next top500 AMD powered supercomputer.
  • Shankar1962 - Wednesday, July 12, 2017 - link

    Intel makes $60billion a year and its official that Skylake was shipping from Feb17 so i do not understand this excitement from AMD fan boys......if it is so good can we discuss the quarterly revenues between these companies? Why is AMD selling for very low prices when you claim superior performance over Intel? You can charge less but almost 40-50% cheap compared to Intel really?
    AMD exists because they are always inferior and can beat Intel only by selling for low prices and that too for what gaining 5-10% market which is just a matter of time before Intel releases more SKUs to grab it back
    What about the software optimizations and extra BOM if someone switches to AMD?
    What if AMD goes into hibernation like they did in last 5-6years?
    Can you mention one innovation from AMD that changed the world?
    Intel is a leader and all the technology we enjoy today happenned because of Intel technology.
    Intel is a data center giant have head start have the resources money acquisitions like altera mobileeye movidus infineon nirvana etc and its just impossible that they will lose
    Even if all the competent combines Intel will maintain atleast 80% share even 10years from now
  • Shankar1962 - Wednesday, July 12, 2017 - link

    To add on
    No one cares about these lab tests. Let's talk about the real world work loads.
    Look at what Google AWS ATT etc has to say as they already switched to xeon sky lake
    We should not really be debating if we have the clarity that we are talking about AMD getting just 5% -10% share by selling high end products they have for cheap prices....they fo not make too much money by doing that.....they have no other option as thats the only way they can dream of a 5-10% market share
    For Analogy think Intel in semiconductor as Apple in selling smartphones
    Intel has gross margins of ~63%
    They have a solid product portfolio technologies and roadmap .....we can debate this forever but the revenues profits innovations and history between these companies can answer everything

Log in

Don't have an account? Sign up now