Testing Optane Memory

For this review, Intel provided a fully-assembled desktop system with Windows 10 pre-installed and Optane Memory caching configured and enabled. The system was assembled by Intel's Demo Depot Build Center as the equivalent of a typical low to mid-range retail desktop with an i5-7400 processor, a B250 motherboard and 16GB of RAM. Storage is a 1TB 7200RPM WD Black hard drive plus the Optane Memory 32GB module.

Intel Optane Memory Review System
CPU Intel Core i5-7400
Motherboard ASUS B250-PLUS
Chipset Intel B250
Memory 2x 8GB Kingston DDR4-2400 CL17
Case In Win C583
Power Supply Cooler Master G550M
OS Windows 10 64-bit, version 1607
Drivers Intel Optane Memory version 15.5.0.1051

In addition, we tested the Optane Memory's performance and power consumption as a standalone SSD using our own testbed. This allowed us to compare against the Optane SSD DC P4800X and to verify Intel's performance specifications for the Optane Memory.

Unfortunately, this review includes only an abbreviated set of benchmarks, for two reasons: the Optane Memory review system arrived less than a week ago, as I was trying to finish up the P4800X review, and the Optane Memory module did not survive testing. After about a day of benchmarking the Optane Memory review system locked up, and after rebooting the Optane Memory module was not detected and the OS installation was corrupted beyond repair. The drive is not completely dead: Linux can detect it as a NVMe device but cannot use it for storage or even retrieve the drive's error log. In communicating with Intel over the weekend, we were not able to figure out what went wrong, and the replacement module could not be delivered before the publication of this review.

The fact that the Optane Memory module died should not be taken as any serious evidence against the product's reliability. I kill review units once every few months during the course of ordinary testing, and I was due for another failure (ed: it's a bona fide AnandTech tradition). What we call ordinary testing is of course not something that anybody would mistake for just the intended use of the product, and no SSD brand has been entirely free from this kind of problem. However, the fact remains that we don't have as much data to present as we wish, and we don't have enough experience with the product to make final conclusions about it.

For comparison with the Optane Memory caching configuration, we selected the Crucial MX300 525GB and the Samsung 960 EVO 250GB. Both of these are available at retail for slightly less than the price of the Optane Memory 32GB module and the 1TB hard drive. They represent different capacity/performance tradeoffs within the same overall storage budget and are reasonable alternatives to consider when building a system like this Optane Memory review system.

For testing of the Optane Memory caching performance and power consumption, we have SYSmark 2014 SE results. Our synthetic tests of the Optane Memory as a standalone SSD are abbreviated forms of the tests we used for the Optane SSD DC P4800X, with only queue depths up to 16 considered here. Since those tests were originally for an enterprise review, the drives are preconditioned to steady state by filling them twice over with random writes. Our follow-up testing will consider the consumer drives in more ordinary workloads consisting of short bursts of I/O on drives that are not full.

Intel's Caching History SYSmark 2014 SE
POST A COMMENT

110 Comments

View All Comments

  • Billy Tallis - Wednesday, April 26, 2017 - link

    As long as you have Intel RST RAID disabled for NVMe drives, it'll be accessible as a standard NVMe device and available for use with non-Intel caching software. Reply
  • fanofanand - Tuesday, April 25, 2017 - link

    I came here to read ddriver's "hypetane" rants, and I was not disappointed! Reply
  • TallestJon96 - Tuesday, April 25, 2017 - link

    Too bad about the drive breaking.

    As an enthusiast who is gaming 90% of the time with my pc, I don't think this is for me right now. I actually just bought a 960 evo 500gb to compliment my 1 tb 840 evo. Overkill for sure, but I'm happy with it, even if the difference is sometimes subtle.

    This technology really excites me. If they can get a system running eith no Dram or Nand, and just use a large block of Xpoint, that could make for a really interesting system. Put 128 gb of this stuff paired with a 2c/4t mobile chip in a laptop, and you could get a really lean system that is fast for every day usage cases (web browsing, video watching, etc).

    For my use case, I'd love to have a reason to buy it (no more loading times ever would be very futuristic) but it'll take time to really take off.
    Reply
  • MrSpadge - Tuesday, April 25, 2017 - link

    > no more loading times

    Not going to happen, because there's quite some CPU work involved with loading things.
    Reply
  • SanX - Tuesday, April 25, 2017 - link

    Blahblahblah indurance, price, consumption, superspeed. Where they are? ROTFLOL At least don't show these shameful speeds if you opened your mouth this loud, Intel. No one will ever look at anything less then 3.5GB/s set by Samsung 960 Pro if you trolled about superspeeds. Reply
  • cheshirster - Wednesday, April 26, 2017 - link

    Is there any technical reasoning why this won't work with older CPU's?
    I don't see this being any different than Intel RST.
    Reply
  • KAlmquist - Thursday, April 27, 2017 - link

    I think that Intel SRT caches reads, whereas the Optane Memory caches both reads and writes. My guess is that when Intel SRT places data in the cache, it doesn't immediately update the non-volatile lookup tables indicating where that data is stored. Instead, it probably waits until a bunch of data has been added, and then records the locations of all of the cached data. The reason for this would be that NAND can only be written in page units. If Intel were to update the non-volatile mapping table every time it added a page of data to the cache, that would double the amount of data written to the caching SSD.

    If I'm correct, then with Intel SRT, a power loss can cause some of the data in the SSD cache to be lost. The data itself would still be there, but it won't appear in the lookup table, making it inaccessible. That doesn't matter because SRT only caches reads, so the data lost from the cache will still be on the hard drive.

    In contrast, Optane Memory memory presumably updates the mapping table for cached data immediately, taking advantage of the fact that it uses a memory technology that allows small writes. So if you perform a bunch of 4K random writes, the data is written to the Optane storage only, resulting in much higher write performance than you would get with Intel SRT.

    In short, I would guess that Optane Memory uses a different caching algorithm than Intel SRT; an algorithm that is only implemented in Intel's latest chipsets.

    That's unfortunate, because if Optane Memory were supported using software drivers only (without any chipset support), it would be a very attractive upgrade to older computer systems. At $44 or $77, an Optane Memory device is a lot less expensive than upgrading to an SSD. Instead, Optane Memory is targeted at new systems, where the economics are less compelling.
    Reply
  • mkozakewich - Thursday, April 27, 2017 - link

    I would really like to see the 16GB Optane filled with system paging file (on a device with 2 or 4 GB of RAM) and then do some general system experience tests. This seems like the perfect solution: The system is pretty good about offloading stuff that's not needed, and pulling needed files into working memory for full speed; and the memory can be offloaded to or loaded from the Optane cache quickly enough that it shouldn't cause many slowdowns when switching between tasks. This seems like the best strategy, in a world where we're still seeing 'pro' devices with 4 GB of RAM. Reply
  • Ugur - Monday, May 01, 2017 - link

    I wish Intel would release Optane sticks/drives of 1-4TB sizes asap and sell them for 100-300 more than SSDS of same size immediately.
    I'm kinda disappointed they do this type of tiered rollout where it looks like it'll take ages until i can get an Optane drive at larger sizes for halfway reasonable prices.
    Please Intel, make it available asap, i want to buy it.
    Thanks =)
    Reply
  • abufrejoval - Monday, May 08, 2017 - link

    Well the most important thing is that Optane is now real a product on the market, for consumers and enterprise customers. So some Intel senior managers don’t need to get fired or cross off items on their bonus score cards.

    Marketing will convince the world that Optane is better, most importantly that only Intel can have it inside: No ARM, no Power no Zen based server shall ever have it.

    For the DRAM-replacement variant, that exclusivity had a reason: Without proper firmware support, that won’t work and without special cache flushing instructions it would be too slow or still volatile.
    Of course, all of that could be shared with the competition, but who want to give up a practical monopoly, which no competition can contest in court before their money runs out.

    For the PCIe variant Intel, chipset and OS dependencies are all artificial, but doesn’t that make things better for everyone? Now people can give up ECC support in cheap Pentiums and instead gain Optane support for a premium on CPUs and chipsets, which use the very same hardware underneath for production cost efficiency. Whoever can sell that, truly deserves their bonus!

    Actually, I’d propose they be paid in snake oil.

    For the consumer with a linear link between Optane and its downstream storage tier, it means the storage path has twice as many opportunities to fail. For the service technician it means he has four times as many test scenarios to perform. Just think on how that will double again, once Optane does in fact also come to the DIMM socket! Moore’s law is not finished after all! Yeah!

    Perhaps Microsoft could be talked into creating a special Optane Edition which offers much better granularity for forensic data storage, and surely there would be plenty of work for security researchers, who just love to find bugs really, really deep down in critical Intel Firmware, which is designed for the lowest Total Cost of TakeOwnership in the industry!

    Where others see crisis, Intel creates opportunities!
    Reply

Log in

Don't have an account? Sign up now