HIS

The other graphics companies might be working on some neat projects, but ATI powerhouse HIS has a few tricks up their sleeve too. Aside from the working RD480 ( Xpress 200 Crossfire) demonstrations, HIS was very proud to announce their next generation ICEQ coolers. The redesigned fan cooler was able to drop heat sink temperatures from 75 degrees Celsius to 58 degrees Celsius in the working demo at the show; but HIS product managers emphasized that this was a best case and that temperatures during 3D rendering usually dropped about 11 degrees on average.

Below, you can see that the new ICEQ system pulls air in from the case and draws it over the entire heat sink.


Click to enlarge.

HIS also had a prototype X550 graphics card on display – something that we touched on a little yesterday. The X550 card (core RV370XT) is really nothing more than an overclocked X300 graphics card. HIS claims that it is to fall in line with the Radeon 9550 AGP performance, but don’t expect to see an actual release of a new video card until R520.


Click to enlarge.

Below is a shot of HIS’s own lineup of RD480 and RD400 motherboards.


Click to enlarge.


Sapphire Biostar
Comments Locked

35 Comments

View All Comments

  • KristopherKubicki - Friday, June 3, 2005 - link

    Thanks for the update DoctorBooze. The details I got were just from a quick conversation with a VP at NetCell. It sounds like their tech is going to be on some motherboards in the near future, so hopefully by then I'll have more details.

    Kristopher
  • DoctorBooze - Friday, June 3, 2005 - link

    Couple of points about all this RAID stuff. The RAID level described in the article is RAID 4, not RAID 3; RAID 3 uses byte-level striping, not block-level. RAID 3 needs synchronised spindles for adequate performance because, to read a whole block back, you have to read off all the discs except the parity disc. Most implementations will also read back the parity and make sure the data is valid; there's no performance hit for this. Overall, RAID 3 reads and writes about as fast as a single drive (whether you have validation enabled or not). It's a very safe way to store your data, as it'll pick up single-sector faults and correct for them (and the controller or OS can subsequently mark the block as bad with no harm done).

    RAID 4 and RAID 5 do not require synchronised spindles because they operate at a block level, so for any block of data you only have to read one disc, and if they validated the data, they'd be as slow as RAID 3 (because they'd have to read the contents of all the discs to retrieve and validate one block, which would mean you got none of the benefits of parallelism). RAID 4 and 5 only protect against faulty sectors if the drives report them as faulty rather than just returning duff data.
  • KristopherKubicki - Friday, June 3, 2005 - link

    Re: All the comments about RAID5 - I may be a little biased, but the cannotation was *good* RAID5 support in kernel!

    Kristopher
  • KristopherKubicki - Friday, June 3, 2005 - link

    JHutch: RAID3 is pretty much identical to RAID5 except that RAID3 dedicates a whole disk to parity.

    RyanVM: I might have phrased it incorrectly - but we meant to say don't expect to see a new card between X550 and R520.

    Kristopher
  • fsardis - Friday, June 3, 2005 - link

    is it just me or the new stacker 830 has 9 bays instead of 12? how can it be bigger than the original stacker then as mentioned in the article?
  • LidlessEye - Friday, June 3, 2005 - link

    Rebuild time shouldn't be quite that long... depending on other I/O and the RAID controller, I'm sure. But if there's a lot of I/O, you shouldn't be using ATA anyway... the probability of a failure even if it takes a day is miniscule. Also, since it wasn't pointed out in the article, RAID 10 or 0+1 offers much greater I/O and nearly the same fault tolerance for four disks, I would use 0+1 at 6 disks (instead of five in RAID 6). So that leaves RAID 6 for 7 or more drives... 14 is often cited as a "common" configuration. FWIW, EMC and IBM recommend RAID 10 and 5 in most of their SAN gear.
  • USAF1 - Thursday, June 2, 2005 - link

    @#25

    The other issue with RAID-3 is that all disks in the array are spindle synchronized. So, your I/O's per second are also limited to that of a single drive. By contrast, RAID-5 allows for independent control of all hard drives in the array. RAID-3 is great for streaming large, contiguous files but not much else. I have 18TB of CIPRICO RAID-3 devices where I work and I wish I didn't...
  • Doormat - Thursday, June 2, 2005 - link

    Its coz rebuild time on a 10k or 15k 73GB SCSI HD is not that long. On an 8 drive 7200RPM 400GB(per drive) array, rebuild times are on the order of days.
  • LidlessEye - Thursday, June 2, 2005 - link

    oh... also, very few people use it in the server world since it so slow, and array failure due to two drive failures is generally caused by negligence, not rebuild time. I would never want to use it for a small array (<7 disks).
  • LidlessEye - Thursday, June 2, 2005 - link

    Windows has offered software RAID 5 since at least NT4. So it’s been available for about a decade…

    RAID 6 is worthless except in very large array sets (like 14 drives) for data archival mainly. Compaq (now HP) has offered this (Called RAID ADG) for about 5 years on their SCSI RAID controllers, and of course that’s in hardware. I believe IBM has offered it for a few years as well.

Log in

Don't have an account? Sign up now