3DMark Cloud Gate Results

3DMark Cloud Gate is a benchmark aimed at notebooks and home PCs, and is quite a bit less demanding. It has a DirectX 11 engine but is limited to Direct3D feature level 10, and is compatible with DirectX 10 hardware. The overall run is about three minutes.


There is not much more to be said about the Core i5 at this point. It does an admirable job keeping the GPU frequency almost flat during this benchmark. You can clearly see the Dell Venue 11 Pro ramping up frequencies on the CPU, which cause temperature spikes when this happens. When it throttles the CPU on this workload, it does free up enough thermal room to allow the GPU frequency to be fairly strong. We see a lot of throttling on the ASUS as well, but not quite as pronounced. Once again, on the physics test the GPU is pushed down in frequency to give the CPU more room. The Yoga 3 Pro tries its best but is once again limited by a much lower SoC temperature set point.

3DMark Cloud Gate CPU Performance

On the CPU side, we have a very similar situation to the Sky Diver benchmark. The ASUS once again keeps a higher average CPU frequency than all of the other Core M devices in this test. The Venue 11 is close though.

3DMark Cloud Gate GPU Performance

On the GPU side, the Zenbook and Venue 11 Pro are basically tied. The shorter and less demanding workload lets the Dell keep up despite not having as good of a cooling solution. But, averages are just averages. Clearly the ASUS keeps a substantially higher GPU frequency for much of this test, as is seen in the graph.

3DMark Cloud Gate Temperature

The SoC temperatures are actually quite high on the Zenbook in this test, with it coming close to the Venue 11 Pro, but the cooling system clearly is more efficient since the change in temperature on the ASUS is much more gradual than the spikes seen in the Venue 11 Pro. The Yoga 3 Pro tries to stay around 65°C but near the end the temperature does go above their target.

Futuremark 3DMark (2013)

The overall benchmark results for this test are very similar to the previous 3DMark test. The ASUS comes in very close to the Dell Latitude with its Core i5, and the other devices fall back quite a ways. Long sustained GPU workloads are very difficult for both of the 5Y71 devices to handle.

3DMark Sky Diver Results 3DMark Ice Storm Unlimited Results
Comments Locked

110 Comments

View All Comments

  • serendip - Wednesday, April 8, 2015 - link

    Maybe Intel made too many compromises and OEMs reached too far with their designs. On one hand a fast race to sleep is good, yet on the other hand, I'd rather be a slow and steady tortoise who finishes the race than a hare that turbos and sleeps frequently to prevent overheating. Device buyers don't care about TDP or poorly set skin temperature limits, they'll just swear off Core M products that give them throttled 600 MHz speeds instead of full power.
  • boblozano - Wednesday, April 8, 2015 - link

    Good point, though I tend to think it'll depend on the use cases. I went back to separate desktop(s) / laptop (rather than a single, uber-laptop) about a year ago. Consequently the laptop can be optimized for size / weight / mobility, for which a core-m device is helpful.
  • jospoortvliet - Thursday, April 9, 2015 - link

    Exactly the same here. I will do my video and image editing on my quad-core desktop anyway, so a core M is perfect: I need portability and battery life in a laptop, not raw performance. Intel made just the right chip for a customer like me here. Too bad that on the desktop side, where I would love an affordable six or eight core with a high tdp, they fail me.
  • girishp - Monday, April 13, 2015 - link

    I tried doing the same thing, but portability quickly triumphs any advantage of a powerful desktop, especially when a good powerful laptop can do most of what I need. I bought the 2nd gen Mac Book Air for my wife and it was good for her basic multimedia requirements (Photoshop, Final Cut Pro, etc.), but the latest Mac Book just isn't powerful enough for any of her needs.
  • MrSpadge - Wednesday, April 8, 2015 - link

    Turbo gives the system increased responsiveness under bursty loads, i.e. most everyday workloads. There's no good reason not to use the performance available and be a tortoise voluntarily. When the load is sustained over longer periods, Turbo automatically throttles back to what ever limit the OEM has set. Had you choosen the tortoise mode, you would have started at this point. With Turbo you don't loose any performance compared to this scenario, it just makes you reach the limit quicker. Turbo also autoamtically factors in things like "how many cores are loaded", "how stresful is this program in reality", "how good is the device cooling" and "how hot is the ambient" by simply measuring them empirically (power consumption & temperature). In fixed tortoise mode you'd have to predict all of them and assume the worst case, just like Intel & AMD did for the first dual and quad cores with low fixed frequencies.

    If Turbo results in "turbos and sleeps frequently to prevent overheating" it is simply set up badly, significantly worse than Turbo on Intel Desktop CPUs since a few years. Instead of sleeping to avoid overheating the turbo bin must gradually be lowered until a good steady state is reached.
  • MrSpadge - Wednesday, April 8, 2015 - link

    Forgot to add: it would be really nice if there was a simple user control for their current preference of maximum performance vs. tolerated temperature. Win allows limiting a CPUs maximum performance state, but most users will never find this option in the advanced energy settings. A simple slider as a sidebar-like gadget could work well. Not only for Core-M, but also for regular laptops and desktops. Add one slider for each discrete GPU's power target.
  • mkozakewich - Wednesday, April 8, 2015 - link

    Also, MS removed that option in all their PCs with connected standby. You can still enable it through the registry, but regular users are even less likely to make use of that option. We need some sane defaults set so we can have separate "Low Power", "Balanced" and "Overdrive" modes. We won't care about skin temperature if we've chosen to use that temperature briefly and we have an option to turn it back down.
  • soccerballtux - Wednesday, April 8, 2015 - link

    the biggest problem is Windows packaging in tons of storage indexing that runs every time you log in, or letting services run around in the background and datamine (Facebook, Amazon Music re-scans every 10 minutes-- I mean seriously? might as sell me a phone with 100MB less of RAM if you're going to do that)
  • The_Assimilator - Wednesday, April 8, 2015 - link

    Because it's obviously Windows' fault that it runs services that you told it to install.
  • lilmoe - Thursday, April 9, 2015 - link

    +1

Log in

Don't have an account? Sign up now