Market Positioning

Typically our market position examination is done through Newegg, although an issue comes through that the PV38G240C0K kit we are testing is not actually listed.  The alternative PV38G240C1K kit, a 2400 C11 2x4 GB kit, retails for $92 at Newegg, but our kit being tested today is more expensive than this when we look elsewhere:

Amazon.com: $116.80
NCIX: CAD$100
Amazon.co.uk: £95.92

If we take the Amazon.com pricing list, when comparing to other 2x4 GB 2400 C10 kits, we get the following:

$72: Team Xtreem LV, TXD38G2400HC10QDC01
$81: G.Skill TridentX, F3-2400C10D-8GTX
$88: G.Skill RipjawsZ, F3-2400C10D-8GZH
$88: G.Skill Trident, F3-2400C10D-8GTD
$92: Patriot Viper III, Black Mamba 2400 C11 (PV38G240C1K)
$107: Avexir Core (Blue), AVD3U24001004G-2CI
$117: Patriot Viper III, Black Mamba (PV38G240C0K)

From this list it would seem that a sub-$75 value would undercut memory kits from G.Skill, but at $117 or even $92, it does price itself out of the market somewhat.  $80 would bring it down to $10/GB, whereas $117 means $14.63 per GB.  There are better deals when buying 16 GB memory kits, in terms of cost per GB, although it comes with the added expense.

Test Bed

Processor Intel Core i7-4770K Retail @ 4.0 GHz
4 Cores, 8 Threads, 3.5 GHz (3.9 GHz Turbo)
Motherboards ASRock Z87 OC Formula/AC
Cooling Corsair H80i
Thermalright TRUE Copper
Power Supply Corsair AX1200i Platinum PSU
Memory ADATA XPG V2 DDR3-2400 C11-13-13 1.65V 2x8 GB
Patriot Viper III DDR3-2400 C10-12-12 1.65V 2x4 GB
Memory Settings XMP
Discrete Video Cards AMD HD5970
AMD HD5870
Video Drivers Catalyst 13.6
Hard Drive OCZ Vertex 3 256GB
Optical Drive LG GH22NS50
Case Open Test Bed
Operating System Windows 7 64-bit
USB 3 Testing OCZ Vertex 3 240GB with SATA->USB Adaptor

Many thanks to...

We must thank the following companies for kindly donating hardware for our test bed:

Thank you to OCZ for providing us with 1250W Gold Power Supplies.
Thank you to Corsair for providing us with an AX1200i PSU, and Corsair H80i CLC
Thank you to ASUS for providing us with the AMD GPUs and some IO Testing kit.
Thank you to ECS for providing us with the NVIDIA GPUs.
Thank you to Rosewill for providing us with the 500W Platinum Power Supply for mITX testing, BlackHawk Ultra, and 1600W Hercules PSU for extreme dual CPU + quad GPU testing, and RK-9100 keyboards.
Thank you to ASRock for providing us with the 802.11ac wireless router for testing.

‘Performance Index’

In our Haswell memory overview, I introduced a new concept of ‘Performance Index’ as a quick way to determine where a kit of various speed and command rate would sit relative to others where it may not be so obvious.  As a general interpretation of performance in that review, the performance index (PI) worked well, showing that memory kits with a higher PI performed better than those that a lower PI.  There were a few circumstances where performance was MHz or CL dominated, but the PI held strong for kit comparisons.

The PI calculation and ‘rules’ are fairly simple:

  • Performance Index = MHz divided by CL
  • Assuming the same kit size and installation location are the same, the memory kit with the higher PI will be faster
  • Memory kits similar in PI should be ranked by MHz
  • Any kit 1600 MHz or less is usually bad news.

That final point comes about due to the law of diminishing returns – in several benchmarks in our Haswell memory overview performed very poorly (20% worse or more) with the low end MHz kits.  In that overview, we suggested that an 1866 C9 or 2133 C10 might be the minimum suggestion, whereas 2400 C10 covers the sweetspot should any situation demand good memory.

With this being said, the results for our kits are as follows:

Performance Index

The Patriot kit starts with a very healthy PI of 240, which we mentioned can reach 266 when overclocked.

Overview, Specifications and Visual Inspection IGP Gaming
Comments Locked

48 Comments

View All Comments

  • julandorid - Monday, November 18, 2013 - link

    Thanks for the review, but what exactly "featured review" means?
  • IanCutress - Monday, November 18, 2013 - link

    That's a little tagline we can attach to the front page articles when they're on the top.
  • Wall Street - Monday, November 18, 2013 - link

    I think that it is the opposite of capsule review. A featured review is a.k.a. a full review.
  • TemjinGold - Monday, November 18, 2013 - link

    Whoa... why is the 2X4 by GSkill $520?
  • IanCutress - Monday, November 18, 2013 - link

    DDR-3000 C12: you have to bin a lot of ICs to get ones with the right voltage/performance characteristics for that kit. Same reason why the more expensive CPUs are also the faster (in MHz numbers or cores) than the cheaper ones.
  • ShieTar - Tuesday, November 19, 2013 - link

    True. But you can get DDR 2666 with CL10 for about 100€, so a set with an 7% shorter access time (higher "PI" as Ian insists on calling it), and only a 11% lower transfer rate for about a fifth of the price.
    The 500$ kit seems to be exclusively for those who don't have to work for their money, or maybe those who are hunting records as a hobby.
  • DanNeely - Tuesday, November 19, 2013 - link

    The very top of the line always is extremely expensive, and - when it's the result of extreme binning - has to be in order to limit demand to the miniscule supply available.
  • Gen-An - Tuesday, November 19, 2013 - link

    Exactly, they have to test the ICs individually with those tester kits and bin them for speed. I just find it amazing that a chip that is designed for say, 1600 C11 at 1.5v has the potential to run 3100 C12 with 1.65v, that's nearly double its rated clock speed with a mere 0.15v bump in voltage.
  • sf101 - Monday, December 9, 2013 - link

    If you want 2400 guaranteed out of the box you pay the premiums.

    most of the 2133 mhz black momba sticks could also do 2666mhz @ 10-13-10-30-2t but your voltages may vary.

    And more than likely some of that is because of individual IMC tolerances per cpu.
  • Franzen4Real - Monday, November 18, 2013 - link

    When it comes to memory, over the years I have tried to read up on different reviews and look at benchmarks in an attempt to understand when it is better to run tighter timings/lower MHz as opposed to looser timings/higher bandwidth. I'm sure it is a case by case basis, but was wondering if the always knowledgeable and helpful Anandtech commenters could give me a quick, dummy terms, explanation of when tight timings or clockspeed is better? Looking at your graph, it shows the C7 1866 through C10 2666 all having the same performance index score, but what situations do those different timings/MHz become better/worse? I hope this isn't too in depth of a question.

    I don't know if this analogy is correct, but I'm seeing it as if RAM was a race car on a track, high bandwidth/loose timings would mean your car travels faster, but has to do more laps around the track to complete. Tight timings/lower bandwidth means the car travels slower but doesn't have to do as many laps to complete. If I am correct on this, at what point does less laps trump traveling faster?

    As a side note, I am looking to build a Haswell desktop in Jan/Feb. It will have one GPU (probably one of the R9's) and more than likely a 2x8gb RAM kit. My usage would very roughly be 70% gaming, 25% rendering in 3DS Max and using some Adobe programs, 5% or less video encoding. I'm looking for help in deciding what to look for in this scenario, but also to finally have a better understanding of how these settings affect different workloads.

    Sorry for the wall of text!!

Log in

Don't have an account? Sign up now