Disappointed, I went back to OCZ

OCZ was worried. The last time I reviewed one of their SSDs I was truthful about it, and it hurt their sales considerably. Customers were returning drives, and to OCZ’s credit, they stepped up and even accepted some returns themselves - something that most manufacturers wouldn’t have done. Regardless what they had told me, there was some admission of fault there. Those JMicron drives were nothing short of crap.

As soon as OCZ started getting word that I wasn’t pleased with Vertex, they went into a state of panic. These drives all do very well in synthetic HDD tests like HDTach and ATTO, that’s generally all they’re reviewed in, so that’s all they’re tested in. But now OCZ was hearing that the Vertex wasn’t passing some of my tests and they had no idea what it was failing or why.

I tend to do a good job of keeping what tests I run secret until the review is published, so there isn’t any unfair optimization. I purposefully introduce new tests to our performance suites to help keep manufacturers honest and optimizing for real world usage scenarios rather than specific benchmarks. OCZ had no idea what I was running, but they knew that the Vertex wasn’t doing well.

Summit on the other hand was performing just fine, but that’s an expensive drive. Vertex was supposed to be good, it should’ve been good, there’s no reason for it to be performing this poorly. I ran the infamous iometer test to see what was going on:

Iometer 4KB Random Writes, IOqueue=1, 8GB sector space IOs per second MB/s Average Latency Maximum Latency
Original Pre-release OCZ Vertex 20.7 0.08 MB/s 48.2 ms 484.5 ms

 

How on earth is this acceptable at all? Average latency of 48.2ms and a maximum latency as bad as the Apex and G.Skill Titan drives? I’ve heard some SSD vendors dismiss the iometer results but let me caution you against that. What these numbers are telling us is that on average, when your OS goes to write a 4KB file somewhere on your drive, it’ll take nearly 50ms. That’s 4.5x longer than a 5400 RPM 2.5” notebook drive and that’s the average case. What part of that sounds acceptable? Anyone who tells you otherwise is delusional.

I thought for sure that the drive was broken and that we’d made no progress since last fall. But the drive hadn’t launched yet, while there were glowing reviews of it, no one had wasted any money. I wrote an email to Ryan Petersen, OCZ’s CEO. I described my findings and told him that while the Vertex’s performance was better than any of the JMicron solutions, it was unacceptable for anything other than perhaps extremely light, single-tasking usage.

I told him it sucked. He said that wasn’t fair. We argued over email but he came back and asked me what I needed to see to make the drive better.

I told him I’d need an average response time in the sub-1ms range and a max latency no worse than Intel’s 94ms. I didn’t think it would be possible. I was prepared for OCZ to hate me once more. He told me to give him a couple of days.

OCZ Sends Me SSDs, Once More Once More, With Feeling
POST A COMMENT

236 Comments

View All Comments

  • KadensDad - Tuesday, October 27, 2009 - link

    How do these drives fail? I have heard that they will just suddenly die, no more writes or reads possible. What I would like to know is what happens when it dies? Do you lose all data? Just can't write anymore? How does the OS respond? Any early warnings? What about e.g. CRC? How does possibility of data corruption compare to traditional SSD? What about RAID? Since the drives are electrical, not mechanical, this reduces the number of failure vectors and environmental concerns (e.g., ambient temperature over lifetime of the drive). Won't SSDs therefore fail closer together in time in a RAID configuration? This reduces the window of opportunity for fixing an array and also decreases the applicability of RAID, however marginal.
    Reply
  • adsmith82 - Monday, September 14, 2009 - link

    I need to run HDDErase on an X25-M. No matter what bootable CD or flash drive I create, HDDErase does not see either of my SATA hard drives. I already disabled AHCI in BIOS. Also, I am using version 3.3. I know that 4.0 does not work with the X25-M.

    Can someone help me troubleshoot this please? Thanks.
    Reply
  • gallde - Thursday, June 11, 2009 - link

    You point out that TRIM will only work on deletions, not on overwrites. But, couldn't a smart controller look at blocks that have a majority of invalid pages and "trim" them as well, recovering clean pages as a background process? Reply
  • forsunny - Thursday, August 13, 2009 - link

    Why not just make the SSDs capable of individual page erases instead of blocks? Problem solved. Reply
  • Ron White - Sunday, August 31, 2014 - link

    Erasing the NAND transistor in an SSD requires such a large jolt of voltage that it would affect surrounding transistors. Reply
  • lyeoh - Friday, May 29, 2009 - link

    Good and informative article.

    Regarding the shill tshen83 who claims that Anandtech cost the drive manufacturers millions of dollars in sales.

    If that is true, Anandtech has saved customers millions of dollars.

    Anandtech should care more about their readers losses than drive manufacturer losses. If Anandtech was a site for drive manufacturers and their shills we wouldn't be reading it.

    To me, if the SSD drive manufacturers lose money, it's their own fault for building crap that has higher write latencies than old fashioned drives with metal discs spinning at 7200RPM or slower. Not anandtech's.

    I can get higher sequential reads and writes by using RAID on old fashioned drives. It is much harder to get lower latency. So Anandtech did the right thing for OCZ.

    Lastly, there might be a way of making your windows machine stutter less even with a crap SSD. Note: I haven't tested the actual effect on an SSD because I don't have an SSD.

    Basically by default when Windows accesses a file on NTFS, it will WRITE to the directory the time of the access. Yep, it writes when it opens files and directories (which are just special files). That might explain the stuttering people see. For a lot of things, Windows has to open files.

    Warning! There are reasons why some people or programs would want to know the last access time of files. Me and my programs don't (and I doubt most people would).

    If you are sure that's true for you (or are willing to take the risk) set NtfsDisableLastAccessUpdate=1 as per:

    http://technet.microsoft.com/en-us/library/cc75856...">http://technet.microsoft.com/en-us/library/cc75856...
    Reply
  • poohbear - Sunday, April 26, 2009 - link

    Brilliant article and very informative on these emerging technology. I wont be buying one anytime soon @ their prices, but good to know we'll FINALLY be replacing convential HDD which are the one component that have been pretty much the same since as far back as i can remember

    "SSDs have +5 armor immunity to random access latency"

    rofl that's the best analogy i've seen on a hardware review site. is every comp geek a RPG geek @ heart?
    Reply
  • Gootch - Sunday, April 19, 2009 - link

    Great article. Realy made me understand what I need to look at before making the plunge. Mistakes and all, my compliments. As for value between the now seemingly drastically improved Vertex vs the X25-M, I compared prices between the two and per Gb, the Intell product for say an 80 Gb drive is Can $5.86/Gb, while the OCZ 60 Gb SSD is Can $6.81/Gb. Now that we are no longer comparing apples and oranges, I think we need to point out that the Intel product is not only faster and maintains it's performance edge better, but it is cheaper per Gb. At least in Canada. I have many OCZ products and I love the company and it's customer support. I can only hope that they will make their SSDs more competitive in the near future, because most consumers will pay the extra 70 bucks and go with the X25 when they pay attention to the numbers, both performance and price. Reply
  • Baffo - Saturday, April 11, 2009 - link

    I could forsee a whole host of issues with encrypting SSD drives, not the least of which is essentially making the drive completely "used" outside of the drive slack space - which would be a temporary reprieve for the reasons discussed in this article. However, I could also see potential performance and lifetime issues since modern encryption uses streaming ciphers (e.g. an entire encrypted block - which may or may not conform to the physical block size will be changed for even one bit change within the block itself). Has anyone looked at the resultant effect on performance due to using encryption - it would be good to compare say Bitlocker, PGP, Checkpoint, and an open source encryption solution (Crypt or something like that?). This could actually become a real driver for moving to on-drive encryption where it would have the opportunity to optimize the encrpytion for the pro/cons of the SSD architecture. Reply
  • brandensilva - Friday, April 10, 2009 - link

    Great article! I respect that OCZ made the necessary changes to make this drive work. I'd rather take a slightly slower drive if it meant consistent performance.

    If my hard drive started to stutter I'd flip out! I'm glad that they took the feedback and instead of selling faulty drives, that would ultimately hurt their brand, they decided to go back to the drawing board and iron out the kinks. I'm not expecting them to compare to Intel's 25-M per price or performance. They don't have nearly the cash or manufacturing capacity to compete with Intel but they do have that small business feel with receiving feedback and making improvements, which is important to customers.

    Lets hope they continue to utilize that aspect of their business and further improve on their products and bring us some reliable SSD's in the future.
    Reply

Log in

Don't have an account? Sign up now