Intel Haswell-E Conclusion

The new Haswell-E affords several advances in the consumer and prosumer desktop PC world:

  1. Eight cores for the high-end i7-5960X processor over the six cores in the i7-4960X
  2. The movement to Haswell architecture and the on-die voltage regulator
  3. A jump from DDR3 to DDR4 memory
  4. The X99 chipset

Since the release of Ivy Bridge-E last year, many users have been complaining about the antiquity of the X79 chipset compared to the mainstream line. X99 comes up to par with Z97 in terms of PCIe storage implemented into the RST along with a full array of SATA 6 Gbps ports and USB 3.0. In fact, the additional PCIe 3.0 lanes of the extreme CPUs (40 on all but the i7-5820K) make more sense for PCIe storage on X99, especially when it is most likely prosumers taking advantage of the newer standards.

The movement from DDR3 to DDR4 makes more sense in the data-center space, where saving every watt of power helps bring down costs. DDR4 uses 1.2 volts as standard compared to 1.5 volts for DDR3, and spread over thousands of modules can be a difference in the power bill. For regular users, it does mean that every purchase of a Haswell-E CPU will require a new kit of memory. For the last several years we have been able to reuse DDR3, but now everyone has to factor in the cost of DDR4. This makes the DRAM module manufacturers happy, and as a result in order to get your sale they are offering DDR4-2133 to DDR4-3200 in various shapes and sizes.

For the CPUs themselves, there are several clear points we can make:

Clock for clock, Haswell-E affords an 8% average boost over Ivy Bridge-E.  This we already knew from the jump to Haswell to Ivy Bridge, however the cache sizes on Haswell-E get a boost due to more cores. This would seem to make little difference, but it means that a Haswell-E six-core processor performs similarly to an Ivy Bridge-E processor with a +300-500 MHz advantage depending on the benchmark.

Despite the low clock speed of the 5960X, it comes top in multithreaded benchmarks. With two more cores, and thus four more threads, despite the frequency difference to the i7-4960X, any benchmark that can use >12 threads sees a distinct improvement. This includes WinRAR, which has a variable thread workload.

The i7-5820K is on par with the i7-3960X at just over a third of the release cost. These two processors have the same core count and same frequency, but differ in their architecture, PCIe lane count and price. With the i7-5820K being two generations newer, it should afford a 10-15% performance improvement in CPU limited benchmarks. This is quite amazing if we consider the release price of the i7-3960X was $990 and the release price of the i7-5820K is $389.

The added benefit of the i7-5820K is also the X99 chipset, although one downside is the number of PCIe lanes from the CPU.

What this all means is that for $600 less, that two-to-three year upgrade will offer a 10-15% boost in CPU limited workloads, or moving up to the i7-5930K will increase throughput even more.

The 28 lanes of the i7-5820K has almost no effect on SLI gaming at 1080p. One question that will come from all sides is if the 28 lanes effects gaming. The CPU will cause an x16/x8 SLI configuration in two-way and x8/x8/x8 in three-way SLI, rather than the x16/x16 or x16/x16/x8. We tested at 1080p maximum settings with two GTX 770 Lightning GPUs, and found that the only benchmark that any significant difference was the average frame rates in Battlefield 4, which dropped from 110 FPS with the 5930K to 105 FPS with the 5820K. It makes sense that we should test this with 4K in the future.

In terms of raw frequency, on average, Haswell-E overclocks lower than Ivy Bridge-E. Both our overclock testing and ASUS’ recommendations showed that 4.3 GHz to 4.4 GHz will be a happy medium for most Haswell-E CPUs, however the chances of getting a good clocking CPU might be harder on Haswell-E. In our tests of an i7-3960X at 4.8 GHz, i7-4960X at 4.5 GHz and an i7-5960X at 4.3 GHz, all three CPUs performed similarly unless a benchmark takes control of the newer instructions, or needs the eight cores of the i7-5960X. However users expecting a day-to-day difference in performance while overclocked should not get their hopes up.

But even with the 5960X, there are two extra cores. This will be the bottom line: prosumers who invest in the high end platform are more often than not CPU-limited rather than content-creation limited.

HandBrake v0.9.9 2x4K, Overclocked

Encoding a 4K60 video to x265 has a 16% boost moving from the i7-4960X to the i7-5960X, which extends to 30% when both are overclocked.

I want to go back to those original questions from the first page of this review and answer them:

  • How much faster is Haswell-E over Ivy Bridge-E? Clock for clock, 8% on average.
  • How well do these CPUs overclock? Not as well as Ivy Bridge-E or Sandy Bridge-E, but performance is comparable.
  • I have an i7-3960X at 4.8 GHz / i7-4960X at 4.5 GHz, should I upgrade? Only if you need more cores.
  • I already have the i7-4960X and run at stock, should I upgrade? Only if you need more cores.
  • Do the 28 PCIe 3.0 lanes on the i7-5820K affect gaming? Not at 1080p in SLI.

Final Words

The most promising member of the three CPUs launched today is the i7-5820K, as now the lowest end CPU for the extreme Intel platform has more cores than the highest member of the mainstream platform, the i7-4790K. We can pick up a low-cost X99 motherboard for the same price as a mid-range Z97 motherboard, but the main barrier to adoption might be the high price of DDR4 which stands at around $250 for a 16GB quad channel kit.

The i7-5960X comes across as the new champion in terms of non-Xeon throughput, although kudos will lay more on having the up-to-date chipset that users have been requesting. Most people moving from a Sandy Bridge-E or Ivy Bridge-E will not see a day-to-day adjustment in the speed of their workflow on the new platform, and the real benefit will be for those that are CPU limited. Haswell-E does mark the time that Nehalem and Westmere users, or 3820K/4820K users, who do anything other than gaming, might consider switching.

Example Systems

Because of the trifecta of new releases today, we put together some systems for users thinking of upgrading. Each one caters to a different crowd, and after the release we will update the pricing as appropriate.

Example Haswell-E Builds
An Average Introduction to Haswell-E
  Component Price US
(Newegg)
CPU Intel Core i7-5820K $389
Motherboard MSI X99S SLI PLUS $230
DRAM G.Skill 4x4GB DDR4-2133 C15 $260
Power Supply Corsair AX860 Platinum $150
GPUs AMD R9 285 x2 $500
Case Corsair Carbide 400R $100
CPU Cooler Cooler Master Nepton 140XL $100
SSD Crucial MX100 512GB $220
Total   $1949

This first system is meant to be representative of a user moving from either a Sandy Bridge or Ivy Bridge mainstream system to the extreme side. This mimics my position back with Nehalem, moving from an AMD X2 system all the way up to the i7-920 at the time. For users wanting to have a introduction to the six-core i7-5820K, this build under $2000 uses a lower cost motherboard and a suitable power supply for dual GPU gaming. We picked the R9 285 which is soon to be released, but AMD announced pricing a few days ago at their AMD30Live event. Given my success with the Nepton 140XL in this review in overclocking, the system should offer some headroom, especially when using the MSI OC Genie button.

Example Haswell-E Builds
Cheap 8-core
  Component Price US
(Newegg)
CPU Intel Core i7-5960X $1000
Motherboard MSI X99S SLI PLUS $230
DRAM G.Skill 4x4GB DDR4-2133 C15 $250
Power Supply Corsair CS550W Gold $85
GPUs AMD R7 240 $60
Case Corsair Carbide 200R $60
CPU Cooler Cooler Master Seidon 120V $50
SSD Crucial MX100 128GB $80
Total   $1815

There will be some prosumers interested in just the 8-core CPU, so everything else needs to be lightweight. We've stripped down most of the components here, using a simple 128GB SSD as well as a cheaper liquid cooler. The R7 240 is there more as a graphics output, but one of the major barriers to a super cheap build is DDR4 pricing. At $250 for a basic DDR4-2133 MHz kit it turns out that in order to use quad channel memory the build almost approaches the price of our introduction to Haswell-E build.

Example Haswell-E Builds
A Mid Range Build
  Component Price US
(Newegg)
CPU Intel Core i7-5930K $583
Motherboard ASRock X99 WS $324
DRAM G.Skill 4x8GB DDR4-2133 C15 $480
Power Supply Corsair RM1000 Gold $180
GPUs AMD R9 290 x2 $800
Case Corsair Carbide Air 540 $130
CPU Cooler Cooler Master Nepton 140XL $100
SSD 2 x Samsung 850 Pro 256GB $400
Total   $2997

Amusingly enough we didn't intend this build to be almost $3000, but it sets a good starting point for an i7-5930K build. Moving up to the i7-5960X would be another $417, making it perhaps prohibitive. The X99 WS sits in the middle of X99 pricing, but the workstation designation should indicate a higher level of compatibility with add-in cards. DDR4 is still pretty expensive here, even when selecting a 32GB kit. We used 2x R9 290s although for that price perhaps 3x R9 285s might be an interesting diversion. For a mid-range build the user has the option of a single Samsung 850 Pro 512GB or we can put two 256GB models in RAID.

Example Haswell-E Builds
Extreme All-Out
  Component Price US
(Newegg)
CPU Intel Core i7-5960X $1000
Motherboard ASUS X99-Deluxe $400
DRAM G.Skill 8x8GB DDR4-2666 C15 $1010
Power Supply Corsair AX1500i $450
GPUs NVIDIA 780 Ti x 3 $2160
Case Corsair Obsidian 900D $320
CPU Cooler Cooler Master Nepton 280L $140
SSD 4 x Samsung 850 Pro 512GB $1600
Total   $7080

In an almost no-holds barred system, using the 8-core monster and 64GB of DDR4 does some financial damage. Add in a high end ASUS X99-Deluxe, a 1500W power supply, the case and CPU cooler uses another $1400, which is surpassed by a four-way RAID SSD setup. One option here would be to look at M.2 SSDs, however there are few on the market at high capacity right now, so a user might go cheaper with the MX100 and then purchase an M.2 next year - take a look at our SSD roundup for more information. With a high end CPU and power supply, it makes sense to go all out on GPUs with three 780 TIs in the mix. Don't forget to add the price of a 4K monitor (or three) in order for the system to stretch its legs, and make sure to take advantage of ASUS' 5-Way Optimization overclocking.

Additional Overclocking Comparison
Comments Locked

203 Comments

View All Comments

  • swing848 - Thursday, September 4, 2014 - link

    Regarding your statement about game benchmarks, "It makes sense that we should test this with 4K in the future".

    You did not say how far into the future, in the near future it makes NO since. The video card you used was an 770; there is no way that GPU can handle 4K at high game settings, even medium settings will bring it to it's knees. First of all it is a mid-range GPU, secondly, it does not have enough local memory.

    Lower resolutions more indicate what the CPU can do because the GPU is not overtaxed therefore not becoming a factor.

    If you change anything, pick a higher end video card, to make sure the GPU is not bottlenecking tests.
  • M.Q.Leo - Saturday, September 6, 2014 - link

    This generation has not much improvement I think. Especially 5820K, even less PCI-E Lanes there is! :(
  • djemir - Monday, September 8, 2014 - link

    I owned a first generation 2008 I7 running at a measly 2.7Ghz and I can tell you the new motherboard alone having 6GB/s SATA and 10GB/sec SATA interface made up for speed losses not to mention the 4790K running at 4.5GHz on a stable overclock. For photoshop and video the new CPU and motherboard have made a world of difference. Save time and open / read time has been reduced from 3-15 minutes per file down to "wait what I can count it on fingers???!" 7 seconds. That means no more "oh well it's saving let me go to the bathroom or something while I wait for this slow a$$ computer. I'm kind of wanting to kick myself for buying a z97 on the very day that the new x99's came out but when I did a price check it just wasn't worth it. This will hold me over til those crazy prices drop. I looked at bench marks for the 4790k vs the lower spectrum of the newer x99's and it looks like the 4790K does better in Photoshop than the X99 due to higher frequency. I even had to drop 8GB of Ram because my old motherboard had 6 slots and was holding 24GB of Ram in 4GB sticks now my new motherboard only has 4 slots. That made me sad. But even with less RAM the motherboard and processor are much more efficient and they can actually use the higher speeds of my SSDs and my 3GB/s and 6GB/s internal and external hard drives as well. Everyone arguing that their old processors are amazing need to open their eyes. On paper it all sounds like they are very much equal. But people forget that motherboards have been improving as well. I was having consistent blue screen crashes on my old system eve after refreshing the system a few times. This new configuration (Asus with i7-4790k) runs like a champ no blue screens at all, nothing but blue skies. I think Intel needs to just drop their prices a little, I would have prefered to get the 8 core i7 or 12 core xeon Yes that sucker is out there as well but at $1000-2500 for these units it's just not worth the small amounts of improvements vs the price. Whereas the huge increase i felt in performance at a much lower price point was worth the upgrade.
  • untoreh - Friday, September 12, 2014 - link

    What about benching some games that have decent multithreading? Like games on the bitsquid engine like War of the roses/war of the vikings? Or Natural Selection 2 with its immensive poligon count? No. Lets just benchmark GPU Heavy AAA titles that generally push the GPU Market more than the gaming market. If you wanna benchmark a 8 core CPU with games, you should AT LEAST let them be half with decent MT support.
  • IUU - Thursday, September 18, 2014 - link

    Well, except for gaming..
    Mostly true but not completely true.
    If you play chess, the 8 core version will smoke any 4 core version just for fun.
    There are other games that are not in the front scene right now that are mainly cpu demanding.
    Any fps game currently in the market, is heavily based on showing realism, so it requires graphics processing power,and demanding from a powerful cpu to run such a game faster than the fractions of a second a slower cpu would, is well.. pointless.
    But gaming is vast , bigger than your encoding software, your bitcoin mining, and your much advertised enterprise software. When developed further, it will require what the most demanding scientific applications require and probably more. See that it is already a main driving force(if not the main driving force) of modern supercomputer improvement. And it will be for the future.
    Think of ingame ais, multiple ais, that will interact with the game world like a human would. Think of voice and pattern recognition, of tracking thousands or millions of objects, etc etc.
    If your only aspiration in buying such a cpu is how good it will run current gen games, you wouldn't ever belong in the category of appropriate customers for this cpu. You would rather be excited by the mobile parts, which while anemic compared to the 8-core haswell, are fancy and fashionable and satisfy your vanity.
    Of course it still remains as a problem, because of this sad market turn, the rise in the pricing of the "extreme" parts which puts the most of us off.
  • kelendar - Tuesday, September 23, 2014 - link

    The one thing I like about the X99 chipset over my ASUS P8P67 Deluxe are the plethora of SATAIII ports and vastly improved onboard sound. The problem is the SB is a dead platform; there is no upgrade path with it and all boards ever made have few ports. I actually had to buy a separate add-in card but it suffers from being on the PCI-8x port - connect more than 1 drive, and they share the throughput.

    That's why I'm looking at this build. I figure the ASUS Rampage IV + 5820 + 16 GB RAM should set me back about $1,100 but it gives me a bit of future-proofing.
  • Spartan 363 - Wednesday, October 1, 2014 - link

    I just purchased the i7 5930K along with an EVGA X99 Classified mobo with 16 GB of Corsair Dominator Platinum DDR4 3000 RAM for now along with 2 EVGA GTX 980 Classified for SLI. I purchased both the Classified versions of the mobo and GTX 980's because I love tinkering and overclocking to see what is the best stable clocks I can achieve without heating up my bedroom like my PC were a space heater which would be handy in a month or so as the cold weather returns to Northern VA where I live. My current PC and even my older PC that this build replaced are air cooled for now. I will buy WC blocked and such for my GTX 980's since I have fantastic components for overclocking with the Classified things from EVGA and a CPU that OC's well too on air.

    Sure,this was a very expensive upgrade, but at least the CPU, RAM and the MOBO will be good for the next 4-5 years just like my old aging i7 920 D0/MSI X58 Pro-E mobo w/12 GB of Corsair XMS3 DDR3 1600 Triple Channel and that PC had aging SLI GTX 680's that have been great so far, but it was time to upgrade that system, it was a great PC for all these years since I purchased it when the X58 and i7 series first launched back then.

    This upgrade over my aging X58 build is a massive jump as I was running into CPU bottlenecks with my SLI GTX 680 even with the CPU overclocked to a stable 3.8GHZ on air cooling with good temps in mind. I tested my new system with both my old EVGA GTX 680 FTW+ 4GB cards in SLI and a single GTX 980 beats it in games that don;t have as great SLI/Crossfire support and when I placed my second GTX 980, it was overkill compared to the 680's but also using less power at the reference clocks at first. I may get a third GTX 980 but I'm holding out on the possible rumored GTX 980 Ti that may come around Spring 2015 and I hope to get 2 at least for SLI if they are a comparble upgrade like the GTX 780 Ti was over the 780 and I hope to have 6 to 8GB of VRAM on the cards too as I am gaming at 4K and there are times where the VRAM is topped out and more VRAM is needed. I'm just glad the that GTX 980 was such a great buy this time around and made a big difference for those of use on aging GTX 680's and earlier cards. I usually upgrade every 2 years for my GPU anyways. I am currently reading up and also overclocking my new build to to tutorials and such on these components that I have since it's been years since I really used to tinker with voltages, RAM memory timings and of course serious voltage tweaks to the GPUS for better overclocking. I actually miss the old days of my tinkeirng my PC for hours a day when I was younger, but at least I have the weekends off to tinker with my new gaming beast that should last me for a few more years. For now, I'm happy at the performance that I have with a mild overclock and my games run and look fantastic on my new 55 inch LG 55UB8500 4K TV that has HDMI 2.0 so that I can play at 60 FPS, but with my current setup,I'm averaging 40+ FPS in most games on ultra settings with AA set to 2 or non at all since in my opinion, a 55 inch 4K TV is the perfect size foe the resolution and turning off AA in most games makes no major difference in appearance on the screen due to the high resolution, so that's a major plus for 4K gaming and it's easier on the hardware too. That TV only cost me about $1500 in Best Buy during the Labor Day weekend sales. It was a steal for a TV that has great features and most importantly, HDMI 2.0 to take advantage of my GTX 980's in 4K instead of having to use Display Port to HDMI adapters I was using with my GTX 680 SLI to achieve 30+ FPS in a few games at 4K with no AA and such.

    For those that want great performance at 4K, SLI GTX 980's are great and are great for systems that have PSUs typically that can comfortably handle both cards at load with a quality 750W PSU vs needing a 1000W unit for older cards.
  • Spartan 363 - Wednesday, October 1, 2014 - link

    I forgot to mention that I am currently using 2 EVGA GTX 980 SC, but I will be sending them back next week to exchange them for the Classified cards that will be the aire cooled ones, but I am currently running clocks on both my current cards at a mild 1300 mhz OC on the core while the memory is at the factory clocks for now, not bad for air cooling, I know I can push for 1400 to 1500 but I will wait for the Classified cards for that type of OC as I will be getting EK WC blocks for both cards this time.
  • sandwich_hlp - Tuesday, October 7, 2014 - link

    Been trying to decipher Intel roadmaps and the like, to no avail, so... can anyone tell me approximately when the DDR4-supporting Core i5 line is expected to launch? I'm needing to upgrade my aged Core 2 Duo (DDR2!), but I don't wanna hop on the DDR3 bandwagon just as it's being superseded by DDR4... :-/
  • GGuess - Saturday, December 6, 2014 - link

    There should be a line of discussion of why haven't CPU speeds increased in the past 5years in a significant way. My 5yr old Intel I7 is a 4 core at 3GHz. The ones discussed here are only 6 or 8 cores and run stock in the mid-3 to 4GHz range. So over 5yrs, the CPU capability has not grown 2 to 3times faster, and that only applies to applications that can use the extra cores and hyper-threading. The usual rule we work to is that people won't even notice a 50% speed increase. It has to be 2 to 3 times before it is noticed. Previously, a 3year refresh of a computer resulted in a 5 to 10x computer speed increase.

    With the current barely noticeable 2x, why bother with the trouble of an upgrade? No wonder Intel's and AMD's sales figures are failing to grow.

Log in

Don't have an account? Sign up now