Final Words

I am positively surprised by the new SMI controller and SP610. I have learned to be skeptical about value controllers because in the past the sacrifice in performance has not been worth the relatively small savings in cost. Usually the problem is that the value controller is also combined with cheaper (i.e. slower) NAND, resulting in a mediocre drive at best. Fortunately, the SP610 does not have that problem. Even though the SMI controller is paired with Micron's 128Gbit 20nm MLC, which is generally slower than 64Gbit parts and Toshiba's NAND, the drive is still extremely competitive under heavy workloads. It is also faster (sometimes substantially) than the MX100 and 840 EVO in light to medium workloads, which have been my recommended value drives.

IO consistency is really the only complaint I have regarding performance. It is not horrible but I would still rather see consistent behavior instead of a "clean later" approach where the drive pushes maximum IOPS whenever it can. For typical client workloads, this is not necessarily bad because IOs tend to happen in bursts and the drive should have enough time to do garbage collection between the bursts, but there is still a chance that the performance may degrade if the controller runs out of empty blocks. Because of that, I would recommend to keep some empty space (maybe 10-15%) to ensure a steady supply of empty blocks.

Furthermore, the lack of DevSleep support is also a minor drawback. The reason why it is minor is because DevSleep only matters if you have a Haswell laptop as the older platforms do not support it. In other words, if you are running a laptop that has a previous generation or older Intel CPU (or any AMD CPU/APU for that matter), you have absolutely no need to worry about DevSleep because your device does not support it. Obviously if you are running a desktop, the power consumption should not be a concern in the first place because there is no battery life to worry about.

NewEgg Price Comparison (6/25/2014)
  120/128GB 240/256GB 480/512GB 960GB/1TB
ADATA Premier SP610 $80 $130 $260 $470
ADATA Premier Pro SP600 $65 $110 - -
ADATA Premier Pro SP920 $90 $150 - -
ADATA XPG SX900 $80 $130 $245  
SanDisk Extreme Pro - $200 $400 $600
SanDisk Extreme II - $171 $308 -
SanDisk Ultra Plus $87 $110 - -
Crucial MX100 $78 $111 $215 -
Crucial M550 $104 $157 $300 $440
Plextor M6S $100 $150 $400 -
Intel SSD 730 - $210 $425 -
Intel SSD 530 $110 $165 $330 -
OCZ Vector 150 $115 $280 $408 -
OCZ Vertex 460 $86 $158 $293  
Samsung SSD 840 EVO $80 $145 $250 $420
Samsung SSD 840 Pro $120 $190 $410 -

The pricing is competitive but not low enough to make the SP610 the king of value SSDs. It is very hard to compete against Crucial/Micron and Samsung in price because they are both NAND manufacturers and have access to cheaper and newer technology NAND. From what I have heard, Micron's 128Gbit 20nm MLC is currently the cheapest NAND on the open market but of course that is not as cost efficient as Micron's 128Gbit 16nm MLC used in the MX100 or Samsung's 128Gbit 19nm TLC used in the 840 EVO.

With the current pricing, the SP610 falls in the infamous middle-class, meaning that it is not cheap enough to be the ultimate value drive but it is also not fast enough to compete against the fastest (albeit more expensive) drives. Given the performance of the SP610, I would gladly pay $10-20 more for it (depending on the capacity) over the MX100 or 840 EVO, but I do not find it to be worth the up to $50 premium in the 1TB-class. The issue is that for light and moderate workloads, the performance difference is negligible, so I would rather save the cash or put it towards another component upgrade.

The SP610 can, however, be a good compromise if you are not entirely sure whether your workload needs a high performance SSD or not, because it is significantly cheaper than the high-end drives like the Extreme Pro, yet it is not much more expensive than the value drives while providing generally better performance.

All in all, I am pleased to see more competition in the value SSD segment. Crucial and Samsung have dominated that for too long but the SM2246EN is turning out to be a platform that can challenge Crucial's and Samsung's drives in the three main aspects: price, performance, and features. With a slightly lower price tag and the updated firmware with TCG Opal 2.0 support, the SP610 could certainly warrant a recommendation over other offerings.

Power Consumption
Comments Locked

24 Comments

View All Comments

  • mapesdhs - Friday, June 27, 2014 - link


    I'd say go with the EVO; Samsung drives have excellent long term consistency, at
    least that's what I've found from the range of models I've obtained.

    Looking at the initial spec summary, the SP610 just seems like a slower MX100,
    which puts it below the EVO or any other drive in that class, so unless it's priced
    like the MX100 I wouldn't bother with it.

    Kristian, may I ask, why are there so many models missing from the tables? eg.
    Vector/150, Neutron GTX, M500, V300, Force Series 3, M550, M5Pro Extreme,
    etc. I'm glad the Extreme II is there though, that's quite a good model atm.

    Would be interesting to include a few older ones too, ie. to see how performance
    has moved on from the likes of the Vertex3/4 and others from bygone days. I still
    bag Vertex4s and original Vectors if I can as they hold up very well to current models,
    though this week I snapped up four 128GB Extreme IIs (45 UKP each) as their IOPS
    rating for a 128GB seems ideal for tasks like a big Windows paging drive in a system
    with 64GB RAM.

    Ian.

    PS. Obvious point btw, perhaps ADATA can improve the consistency issue with a fw update?
  • stickmansam - Friday, June 27, 2014 - link

    The SP610 is actually about the same as the EVO and MX100 it seems based on overall results

    The firmware and controller actually seem pretty competitive

    I do agree that more drives should be compared if possible. Even the Bench tool seems to be missing drives that were in reviews in the past.
  • dj_aris - Friday, June 27, 2014 - link

    Why are we still testing sata 3 drives anyway?
  • mapesdhs - Friday, June 27, 2014 - link

    Because the vast majority of people still want to know how they perform. Remember
    there will be many with older SSDs who are perhaps considering an upgrade by now,
    from the likes of the venerable Crucial M4/V4, Vertex2/3, older Intels, Samsung 830, etc.
    For newer reviews, it's less the sequential rates and more about the random behaviour,
    consistency, and other features like encryption that people want to know about now,
    especially with so many being used in laptops, notebooks, etc. I also like to know how
    what's being offered anew compares wrt pricing, ie. are things really getting better?
    It's great that 1TB models are finally available, but I still yearn for the day when SSDs
    can exceed HDDs in offered capacities. I read that SanDisk seem determined to push
    forward this is as quickly as possible, moving to 2TB+ next year. I certainly hope so.
    Nothing wrong with having 4TB+ rust-spinners, but backing them up is a total pain (and
    quite frankly anyone who uses a 4TB non-Enterprise SATA HDD to hold their precious
    data is nuts). By contrast, having 4TB+ SSDs at least means doing backups wouldn't
    be slow. When I use Macrium to create a backup image of a 256GB C-drive SSD onto
    some other SSD, the speeds achieved really are impressive.

    I guess the down side will be that, inevitably at first, high capacity SSDs will be expensive
    purely because it'll be possible to sell them at high prices no problem, whatever they
    actually cost to make. I just hope at least one vendor will break away from the price
    gouging for a change and really move this forward; if nothing else, they'll grab some
    hefty market share if they do.

    Ian.
  • name99 - Friday, June 27, 2014 - link

    "The benefit of ARC is that it is configurable and the client can design the CPU to fit the task, for example by adding extra instructions and registers. Generally the result is a more efficient design because the CPU has been designed specifically for the task at hand instead of being an all around solution like the most ARM cores are."

    This is marketing speak. In future, rather than just repeat the claims about why "CPU you've never heard of is more awesome than anything you've actually heard of" please provide numbers to back up the claim, or ditch the PR speak.
    If this CPU is "more efficient" than, e.g., an ARM (or MIPS or PPC) competitor, let's have some power numbers.

    My complaint is not that they are using ARC --- they can use whatever CPU they like. My complaint is that the two sentences I quoted are absolutely no different from simply telling us, e.g. "this SSD is more efficient than its competitors" with no data to back that up. Tech claims require data. If MSI aren't willing to provide data to back up a tech claim, you shouldn't be printing their advertising in a tech story.
  • Kristian Vättö - Saturday, June 28, 2014 - link

    Nothing regarding the controller's architecture came from ADATA or SMI. In fact, I got the ARC part from Tom's Hardware, although I added the parts about ARC's benefits. If I just put ARC there and leave out the explanation, what is the usefulness of that? Yay, yet another acronym that means absolutely nothing to the reader unless it is opened to them.

    To be clear, I did not mean that an ARC CPU is always more efficient in every task. However, for a specific task with a limited set of operations (like in an SSD), it usually is because the design can be customized to remove unnecessary features or add ones that are needed. It's not an "ARM killer", it is simply an alternative option that can suit the task better by removing some of the limitations that off-the-self CPU designs have. Ultimately the controller is just a piece of silicon and everything it does is operated by the firmware.
  • epobirs - Saturday, June 28, 2014 - link

    After all of these years, when I see the Argonaut name I find myself wondering when a new Star Glider will be published. (Star Fox doesn't count other than spiritually.)
  • s44 - Saturday, June 28, 2014 - link

    How do we know this is even going to be the controller in future units of this model? The bait-and-switch with the Optima deserves more than passing mention, I think.
  • hojnikb - Saturday, June 28, 2014 - link

    Well, to be fair, sandforce version of optima is faster, so really, you're getting a better drive.
    Still not okay, but not nearly as bad as kingston's bait and switch.
  • smadhu - Sunday, June 29, 2014 - link

    To muddy the controller waters further, we are planning to launch a fully open source NVM Express controller this year. This is from IIT-Madras, an Indian university in conjunction with the IT Univ. of Copenhagen. The development itself is in public, the main source is at bitbucket.org/casl/ssd-controller. This is part of a larger open storage stack project called lightstor, see lightstor.org. Lightstor is an extremely ambitious effort to reinvent storage from the controller up to the application stack. The SW stack, called Lightnvm is up and running on a Linux branch. Google Lightnvm. There is also an emulator to run it now.

    We will be launching a Xilinx based PCIe card with our controller IP and open source CPU (1-4 cores). CPU is based on the RISC-V ISA from UCB, another partner of ours. The PCIe EP and ONFI will have to be proprietary initially but we will be completing our open source ONFI 4.0 early next year. All PHY will still have to be 3rd party since we do not want to get into analog PHY development.

    Add a SATA controller instead of PCIe and you have a SATA SSD.

    All HW source is BSD licensed, so anyone can download it and tape it out with no copyleft hassles. Final version should be the fastest controller out there. Idea is to beat every controller out there and not just launch a univ. test bed. Core currently runs at 700 Mhz on a 32 bit datapath.

    If anybody wants to help in testing, bench-marking or coding drop us a note. If nothing else, have fun going through the source of an SSD controller. It is a lot of fun. Language is Bluespec, a very high level HDL which is easy for SW geeks to understand. Hides a lot of the HW. plumbing. Comes from MIT, another collaborator of ours so we are partial to the language.

    Hopefully we will do to the storage world what Linux did to the OS world !

    The core is being bench-marked right now, hope to publish something by early winter.

    I apologize for what technically is an ad for our project but I figure a BSD licensed open source SSD controller qualifies for free ads !

Log in

Don't have an account? Sign up now