AnandTech Storage Bench 2011

Two years ago we introduced our AnandTech Storage Bench, a suite of benchmarks that took traces of real OS/application usage and played them back in a repeatable manner. Anand assembled the traces out of frustration with the majority of what we have today in terms of SSD benchmarks.

Although the AnandTech Storage Bench tests did a good job of characterizing SSD performance, they weren't stressful enough. All of the tests performed less than 10GB of reads/writes and typically involved only 4GB of writes specifically. That's not even enough exceed the spare area on most SSDs. Most canned SSD benchmarks don't even come close to writing a single gigabyte of data, but that doesn't mean that simply writing 4GB is acceptable.

Originally I kept the benchmarks short enough that they wouldn't be a burden to run (~30 minutes) but long enough that they were representative of what a power user might do with their system.

Not too long ago I tweeted that I had created what I referred to as the Mother of All SSD Benchmarks (MOASB). Rather than only writing 4GB of data to the drive, this benchmark writes 106.32GB. It's the load you'd put on a drive after nearly two weeks of constant usage. And it takes a *long* time to run.

1) The MOASB, officially called AnandTech Storage Bench 2011 - Heavy Workload, mainly focuses on the times when your I/O activity is the highest. There is a lot of downloading and application installing that happens during the course of this test. My thinking was that it's during application installs, file copies, downloading and multitasking with all of this that you can really notice performance differences between drives.

2) I tried to cover as many bases as possible with the software I incorporated into this test. There's a lot of photo editing in Photoshop, HTML editing in Dreamweaver, web browsing, game playing/level loading (Starcraft II & WoW are both a part of the test) as well as general use stuff (application installing, virus scanning). I included a large amount of email downloading, document creation and editing as well. To top it all off I even use Visual Studio 2008 to build Chromium during the test.

The test has 2,168,893 read operations and 1,783,447 write operations. The IO breakdown is as follows:

AnandTech Storage Bench 2011 - Heavy Workload IO Breakdown
IO Size % of Total
4KB 28%
16KB 10%
32KB 10%
64KB 4%

Only 42% of all operations are sequential, the rest range from pseudo to fully random (with most falling in the pseudo-random category). Average queue depth is 4.625 IOs, with 59% of operations taking place in an IO queue of 1.

Many of you have asked for a better way to really characterize performance. Simply looking at IOPS doesn't really say much. As a result I'm going to be presenting Storage Bench 2011 data in a slightly different way. We'll have performance represented as Average MB/s, with higher numbers being better. At the same time I'll be reporting how long the SSD was busy while running this test. These disk busy graphs will show you exactly how much time was shaved off by using a faster drive vs. a slower one during the course of this test. Finally, I will also break out performance into reads, writes and combined. The reason I do this is to help balance out the fact that this test is unusually write intensive, which can often hide the benefits of a drive with good read performance.

There's also a new light workload for 2011. This is a far more reasonable, typical every day use case benchmark. Lots of web browsing, photo editing (but with a greater focus on photo consumption), video playback as well as some application installs and gaming. This test isn't nearly as write intensive as the MOASB but it's still multiple times more write intensive than what we were running in 2010.

As always I don't believe that these two benchmarks alone are enough to characterize the performance of a drive, but hopefully along with the rest of our tests they will help provide a better idea.

The testbed for Storage Bench 2011 has changed as well. We're now using a Sandy Bridge platform with full 6Gbps support for these tests.

AnandTech Storage Bench 2011 - Heavy Workload

We'll start out by looking at average data rate throughout our new heavy workload test:

Heavy Workload 2011 - Average Data Rate

Performance in our 2011 Storage Bench is a bit below the average of SF-2281, although the difference isn't anything to worry about. I decided to include only the most important graphs but you can find the complete dataset in our Bench.

AnandTech Storage Bench 2011 - Light Workload

Our light workload actually has more write operations than read operations. The split is as follows: 372,630 reads and 459,709 writes. The relatively close read/write ratio does better mimic a typical light workload (although even lighter workloads would be far more read centric).

The I/O breakdown is similar to the heavy workload at small IOs, however you'll notice that there are far fewer large IO transfers:

AnandTech Storage Bench 2011 - Light Workload IO Breakdown
IO Size % of Total
4KB 27%
16KB 8%
32KB 6%
64KB 5%

Light Workload 2011 - Average Data Rate

Performance vs Transfer Size Power Consumption
Comments Locked

60 Comments

View All Comments

  • Duncan Macdonald - Saturday, November 16, 2013 - link

    Would it be possible for you to do an additional SSD test - how much does the write performance recover after a 30 minute idle period. Most consumer PCs (and even many servers) tend to have idle periods every day and if the garbage collection and free space erasure algorithms on the drive can get it back to a near new condition then this would be significent.
  • 'nar - Monday, November 18, 2013 - link

    I agree, GC and idle time makes TRIM unnecessary, and even works better anyway. These benchmarks are a gross exaggeration of anything done in real-world usage. On the one hand everyone recognizes that fact, but on the other they keep hammering consistency and incompressible data like everyone does video editing all day every day.
  • thefoodaddy - Saturday, November 16, 2013 - link

    The prices in that table for the Seagate and Crucial 240GB are, sadly, not $150 ($220 and $180, respectively)--way to get my hopes up, Dyntamitedata.com!
  • purerice - Sunday, November 17, 2013 - link

    On google shopping I just typed in "Seagate SSD 600" and selected 240GB. 50+stores had them and 1 store has them for $149.99 with $0 tax and $0 shipping
  • Kristian Vättö - Sunday, November 17, 2013 - link

    The prices were taken on November 12th and both drives were $150 back then (probably a temporary sale).
  • slickr - Saturday, November 16, 2013 - link

    Man these SSD's seem like a lot of hard work to me. I mean with all the firmware updates that need to be flushed, with all the failures that seem to be happening, with the inconsistent performances, with the fairly still high prices even after 4 years of SSD drives.

    I mean 4 years ago I though we would have at least 250GB for $150 by around this time, by around year 2014, but we we are still way off, I though 500GB SSD's would have started becoming more mainstream in 4 years, but now that we are here, now that I'm in the future it hasn't been done.

    In fact some of the drives are still plagued by the same problems some of the first SSD's had. I mean I agree that the average SSD is more reliable and generally faster, but this is not by much and the prices have been slow to come down.

    So I hope to see $150 250GB SSD's and more in the next several months, maybe 2014 will be the year, but I think if you just want reliability and security its best to go with normal hard drives that have huge capacity at cheap prices, I can get 1TB for $70 that is super cheap.
  • 'nar - Monday, November 18, 2013 - link

    I think you have been mislead by the benchmarks. They do not compare SSD's to hard drives, so you have no perspective. I recommend SSD's for everyone. They are faster and more reliable. Get a hard drive if you want your 1 TB of storage, which will be pictures, music, and video anyway, all things that would not benefit from SSD speeds.

    The only concern is that many people that complain about reliability fail to mention the model SSD that failed on them. I use Intel/Sandforce drive for systems I build for others, and OCZ/SandForce/Bigfoot on all of my own and never had a problem. I suspect that those looking for cheap, get cheap. If you want reliability don't look for the cheapest drive. As in all things, you get what you pay for. Find yourself a good drive, THEN look for a good price on it. Don't assume that any SSD made by a particular manufacturer is good.
  • name99 - Saturday, November 16, 2013 - link

    "The problem now is that every significant segment from a performance angle has been covered."

    Unfortunately no. If *I* were an SSD manufacturer, I'd try to differentiate myself by putting together a hybrid drive that isn't crap. It is insane that, with 2013 almost over, there is, as far as I can tell, precisely one HD available that is a hybrid drive --- and that HD is available in one form factor+size, only as a bare drive, and with a minuscule pool of flash.
    Complain about Apple all you like, but at least they have done (within the scope of what they control) something about this --- unlike freaking WD, Seagate, SanDisk and everyone else.

    WTF have SanDisk (or Sandforce, or Samsung, or Toshiba, or ...) down something about this? Put together a decent package of some RAM, some flash, a controller, firmware that does the caching properly, and sell it to WD or Seagate to glue onto 1TB+ size drives? Apple's solution is expensive, probably too expensive, because it's using pretty good quality flash and a lot of it. Cut down to 48 or 32GB of flash that's slightly slower and I think you could still give a heck of a kick to a drive at an additional cost of $30 to $50. I'd certainly be willing to pay this.

    I do not understand WD and Seagate. You go to Best Buy or Frys today, and they're each trying to reach out at you with a huge collection of basically identical drives --- they'll sell you a 2TB 2.5" in a green version, a black version, a red version, a blue version. (And those are not case colors, they are supposedly different models.)
    The one thing they won't sell is the thing that would actually make a difference, that I'd be willing to pay for, a freaking HYBRID version that consists of more than adding 8GB of crappy bargain bin flash and lame caching software that won't even capture writes.
  • Bob Todd - Sunday, November 17, 2013 - link

    Indeed. While it would be great if every laptop with a 2.5" drive had a mSATA or M.2 slot available, they are still the minority. I have SSDs as the boot drives of every machine sans one laptop that still has one of the 7200rpm 750GB Seagate SSHDs. I want at least 500GB of capacity for that machine, but I don't really want to drop the money for an SSD that big. A 7mm 500+ GB drive with 32+ GB of NAND needs to happen.
  • emvonline - Sunday, November 17, 2013 - link

    100% agree. A 32G SSD+1TB HDD would cover all storage needs and be very fast for 90% of all work. On the once a month timing that you load a rarely accessed 1GB video it would take 3 seconds more than a SSD. All this assumes the Cache software works correctly :-)

Log in

Don't have an account? Sign up now