iPhone Performance Across Generations

 

We did this in the iPhone 5 review, so I thought I'd continue the trend here. For those users who have no desire to leave iOS and are looking to find the best time to upgrade, these charts offer a unique historical look at iPhone performance over the generations. I included almost all iPhone revisions here, the sole exception being the iPhone 3G which I couldn't seem to find. 
 
All of the devices were updated to the latest supported version of iOS. That's iOS 7 for the iPhone 4 and later, iOS 6.1.3 for the iPhone 3GS and iOS 3.1.3 for the original iPhone.
 
At its keynote, Apple talked about the iPhone 5s offering up to 41x the CPU performance of the original iPhone. Looking at SunSpider however, we get a very different story:

iPhone Generations - SunSpider 1.0

Performance improved by a factor of 100x compared to the original iPhone. You can cut that in half if the iPhone could run iOS 4. Needless to say, Apple's CPU performance estimates aren't unreasonable. We've come a long way since the days when ARM11 cores were good enough.

Even compared to a relatively modern phone like the iPhone 4, the jump to a 5s is huge. The gap isn't quite at the level of an order of magnitude, but it's quickly approaching it. Using the single core iPhone 4 under iOS 7 just feels incredibly slow. Starting with the 4S things get a lot better, but I'd say the iPhone 4 is at the point now where it's starting to feel too slow even for normal consumers (at least with iOS 7 installed).

iPhone Generations - Browsermark 2.0

Browsermark 2.0 gives us a good indication of less CPU bound performance gains. Here we see over a 5x increase in performance compared to the original iPhone, and an 83% increase compared to the iPhone 4.

I wanted to have a closer look at raw CPU performance so I turned to Geekbench 3. Unfortunately Geekbench 3 won't run on anything older than iOS 6, so the original iPhone bows out of this test.

iPhone Generations - Geekbench 3 (Single Threaded)

Single threaded performance scaled by roughly 9x from the 3GS to the iPhone 5s. The improvement since the iPhone 4/4S days is around 6.5x. Single threaded performance often influences snappiness and UI speed/feel, so it's definitely an important vector to scale across.

iPhone Generations - Geekbench 3 (Multi Threaded)

Take into account multithreaded performance and the increase over the 3GS is even bigger, almost 17x now.

The only 3D test I could get to reliably run across all of the platforms (outside the original iPhone) was Basemark X. Again I had issues getting Basemark X running in offscreen mode on iOS 7 so all of the tests here are run at each device's native resolution. In the case of the 3GS to 4 transition, that means a performance regression as the 3GS had a much lower display resolution to deal with.

iPhone Generations - Basemark X (Onscreen)

Apple has scaled GPU performance pretty much in line with CPU performance over the years. The 5s scores 15x the frame rate of the iPhone 4, at a higher resolution too.

iPhone 5s vs. Bay Trail

I couldn't help but run Intel's current favorite mobile benchmark on the iPhone 5s. WebXPRT by Principled Technologies is a collection of browser based benchmarks that use HTML5 and js to simulate a number of workloads (photo editing, face detection, stocks dashboard and offline notes).

iPhone 5s vs. Bay Trail - WebXPRT (Chrome/Mobile Safari)

Granted we're comparing across platforms/browsers here, but the 5s as a platform does extremely well in Intel's favorite benchmark. The 5c by comparison performs a lot more like what we'd expect from a smartphone platform. The iPhone 5s is in a league of its own here. While I don't expect performance equalling the Atom Z3770 across the board, the fact that Apple is getting this close (with two fewer cores at that) is a testament to the work done in Cupertino.

At its launch event Apple claimed the A7 offered desktop class CPU performance. If it really is performance competitive with Bay Trail, I think that statement is a fair one to make. We're not talking about Haswell or even Ivy Bridge levels of desktop performance, but rather something close to mobile Core 2 Duo class. I've broken down the subtests in the table below:

WebXPRT Performance (time in ms, lower is better)
Chrome/Mobile Safari Photo Effects Face Detection Stocks Offline Notes
Apple iPhone 5s (Apple A7 1.3GHz) 878.9 ms 1831.4 ms 436.1 ms 604.6 ms
Intel Bay Trail FFRD (Atom Z3770 1.46GHz) 693.5 ms 1557.0 ms 542.9 ms 737.3 ms
AMD A4-5000 (1.5GHz) 411.2 ms 2349.5 ms 719.1 ms 880.7 ms
Apple iPhone 5c (Apple A6 1.3GHz) 1987.6 ms 4119.6 ms 763.6 ms 1747.6 ms

It's not a clean sweep for the iPhone 5s, but keep in mind that we are comparing to the best AMD and Intel have to offer in this space. I suspect part of why this is close is because both of those companies have been holding back a bit (there's no rush to build the fastest low margin parts), but it doesn't change reality.

 

CPU Performance GPU Architecture & Performance
Comments Locked

464 Comments

View All Comments

  • BrooksT - Wednesday, September 18, 2013 - link

    Nobody will disagree because you've completely destroyed your credibility by insulting the credibility, integrity, and competence of the reviewer, the site, and Apple because the evidence doesn't conform to your speculations and bias. You are not to be taken seriously, and at this point I think everyone sees that.

    Post evidence of this conspiracy or STFU.
  • ddriver - Thursday, September 19, 2013 - link

    How a whiff of reality for you - my credibility is and has not been on the line on this one. You don't know who I am, you don't know my credentials. This is not the case for Anand, even if I am right he is not in the position to admit to compiling the review in a manner that creates an unrealistically good presentation of a product, because unlike for me, that would be a huge credibility calamity for him. If anything, his responses are very "political" carefully dancing around the pivot points of my concerns. While his response did partially bring light to a few of my concerns, my key points remain valid - the article continues to not compare A7 with ARMv7 head to head in the sole native CPU benchmark present in the article, "CPU performance" was not renamed to JS performance or moved to browser performance or something like that. See, just because he didn't agree with my points and admit to being biased does not mean I am wrong and that is not the case, considering he is not in the position to do that. I didn't really expect anything more or less than the same "carefully dancing" answer as the article itself, my main motivation was to show him that not all AT readers are incapable of reading between the lines, for the sake of future articles, I did not expect that he would make any revision to the article at hand. Honesty is for those who have nothing to lose, and while his credibility is no the line, my isn't, make the conclusions, if you can ;)
  • CyberAngel - Thursday, September 19, 2013 - link

    Don't worry! I believe you...conditionally!
    I put it this way: I greatly doubt that the tests would reveal any points that are less than favorable the Apple. ANY company would do the same: promote the best parts and highlight the strength of the product.
  • akdj - Thursday, September 19, 2013 - link

    "You don't know who I am, you don't know my credentials."
    I'm not sure anyone here is interested---you've already made clear you're a conspiracy theorist, that you believe Apple is paying off reviewers, that you disrespect folks MUCH more intelligent than yourself when it comes to chip architecture...and that your "main motivation was (Is) to show him that not all AT readers are incapable of reading between the lines". You've shown NO one ANYthing substantiated. You continue to argue baseless facts and accuse respected individuals and groups/teams of intelligent members of being bias towards Apple. Nothing in this review supports your claims---NOTHING! And, as I pointed out earlier---even the biggest anti-apple sites are applauding Apple's efforts with this SoC effort.
    You're in the minority---and to be so vain that we would care about who you are and what your credentials are is silly. It sounds to me like you're a 17 year old with a decent vocabulary and not enough paper in the pocket to pick up an iPhone 5s for yourself. But...what do I know. I don't know you, your credentials...or how you lean politically, nor do I care.
    IMO---you're an insult to the entire Anand crew. I'm not sure why I continue to read your responses, they're all the same, just worded differently. Again...you're in the (extreme) minority. You're certainly not an engineer, chip designer, app developer or technological guru---if you were, you would understand the feat Apple has achieved with this SoC architecture.
    J
  • Nurenthapa - Friday, September 20, 2013 - link

    I've been enjoying reading this in China, but you, sir, are really annoying me with your sniveling drivel. You have an axe to grind and simply won't shut up. Hope you disappear from this forum. BTW, I use a HTC One and iPad 2, and occasionally my old original 2007 iPhone. I love IOS and iPhones, but won't be buying one until they come out with a somewhat bigger screen.
  • oryades - Wednesday, September 18, 2013 - link

    Intel, now Apple, the same featured reviews.
  • edward kuebler - Wednesday, September 18, 2013 - link

    We are talking about 64 bits too much. The story is new instruction set in ARMv8. Instead complicating the hardware for backwards compatibility (e.g. look at x86 still supporting 16bit code) they wrote a new instruction set faster and less energy demanding. There is still ARMv7 compatibility, but the 64bit mode is independent. And the thing is, once you redesign your architecture, why not go 64bit? what´s the point of staying 32 bit? Moving more data is both slower and faster. More and wider registers help compiler optimizations and media decoding. I didn't get all this “cunning deceitful conspiracy” feeling you talk about. Staying in 32 bit land, *that* would keep me guessing.
  • Anand Lal Shimpi - Wednesday, September 18, 2013 - link

    Our browser based suite (stressing js/HTML5 and other browser based workloads) remains unchanged from all of the other mobile SoC reviews we've done. There's no way of getting around the software differences on these mobile devices as you buy hardware+software together. Unfortunately it's still our best option for non-GPU cross platform comparisons, there just aren't many good cross platform CPU tests.

    I called out the inclusion of hardware accelerated AES/SHA when referencing those tests, there were no attempts to hide that fact. The fact remains that those algorithms will see a speedup on ARMv8 hardware because of those instructions. Note this is no different than when we run the TrueCrypt benchmarks on AES-NI enabled processors vs. those that don't have it (e.g. http://images.anandtech.com/graphs/graph5626/44765...

    Apple provided absolutely zero guidelines on how the review was to be conducted. The only stipulations were around making sure we didn't disclose the fact that we had devices. In fact, most manufacturers don't - at least not with us. Whenever there are any stipulations presented, we always disclose them on the site (e.g. see our early look at Trinity desktop performance).

    Krait implements ARMv7, so that's 64-bit wide registers for its NEON units. It expanded the width of the execution units, but the registers themselves have to adhere to the ARMv7 ISA.

    I think we explained why 64-bit makes sense (doing so at the last minute doesn't make sense, immediate SIMD/Crypto perf increases today, and helps build up the ecosystem), and even highlighted cases where a performance degradation does happen (see: Dijkstra tests). Keep in mind that iOS has always erred on the side of being more thrifty with RAM to begin with. I would like to see more but I don't know how necessary it is today.

    Take care,
    Anand
  • ddriver - Wednesday, September 18, 2013 - link

    Anand, maybe you should hire a developer to write native cross platform benchmark tools. This is the only way to avoid all caveats like sponsored exclusive optimizations, different implementations, eliminate unrealistic low footprint synthetics, "selective compilers" (*cough Intel*) and whatnot. Considering the amount of reviews you are doing and the fact that C/C++ compilers have caught up with ARM for a long time, this is nothing hard and something that entirely makes sense, especially relative to using different JS engine implementations to measure CPU performance. JS should go in the "browser" department, not CPU performance.

    According to wikipedia, Krait implements 128bit SIMD, so maybe that is a mistake on wikipedia's behalf?

    I still think encryption results belong in their own chart, and have no place in a chart that is supposed to be indicative of the integer performance delta between 32 and 64bit execution modes. Even with the clarification you made, it creates an unrealistic impression, not to mention some people skimp over the text and only look at the numbers. Encryption is encryption, integer performance is integer performance. Why mix the two (except for the reason I already mentioned and you deny)?

    I wish you'd reflected a bit on the marketing aspect of the transition to 64, considering how much apple is riding it this time around. No one argues 64bit is good and more performance is good, but this brings up the issue of the particular implementation, e.g. a fast chip with only a single gigabyte of ram, and how will that play out with an actual performance demanding real world application.

    Thanks for addressing my concerns.
  • Wilco1 - Wednesday, September 18, 2013 - link

    ARMv7 has 32 64-bit SIMD registers but they can also be used as 16 128-bit SIMD registers. Modern CPUs like Cortex-A15 and Krait support many 128-bit SIMD operations in a single cycle, but not all operations are supported (such as double precision FP). ARMv8 has 32 128-bit SIMD registers and supports SIMD of 2 64-bit doubles.

Log in

Don't have an account? Sign up now