iPhone Performance Across Generations

 

We did this in the iPhone 5 review, so I thought I'd continue the trend here. For those users who have no desire to leave iOS and are looking to find the best time to upgrade, these charts offer a unique historical look at iPhone performance over the generations. I included almost all iPhone revisions here, the sole exception being the iPhone 3G which I couldn't seem to find. 
 
All of the devices were updated to the latest supported version of iOS. That's iOS 7 for the iPhone 4 and later, iOS 6.1.3 for the iPhone 3GS and iOS 3.1.3 for the original iPhone.
 
At its keynote, Apple talked about the iPhone 5s offering up to 41x the CPU performance of the original iPhone. Looking at SunSpider however, we get a very different story:

iPhone Generations - SunSpider 1.0

Performance improved by a factor of 100x compared to the original iPhone. You can cut that in half if the iPhone could run iOS 4. Needless to say, Apple's CPU performance estimates aren't unreasonable. We've come a long way since the days when ARM11 cores were good enough.

Even compared to a relatively modern phone like the iPhone 4, the jump to a 5s is huge. The gap isn't quite at the level of an order of magnitude, but it's quickly approaching it. Using the single core iPhone 4 under iOS 7 just feels incredibly slow. Starting with the 4S things get a lot better, but I'd say the iPhone 4 is at the point now where it's starting to feel too slow even for normal consumers (at least with iOS 7 installed).

iPhone Generations - Browsermark 2.0

Browsermark 2.0 gives us a good indication of less CPU bound performance gains. Here we see over a 5x increase in performance compared to the original iPhone, and an 83% increase compared to the iPhone 4.

I wanted to have a closer look at raw CPU performance so I turned to Geekbench 3. Unfortunately Geekbench 3 won't run on anything older than iOS 6, so the original iPhone bows out of this test.

iPhone Generations - Geekbench 3 (Single Threaded)

Single threaded performance scaled by roughly 9x from the 3GS to the iPhone 5s. The improvement since the iPhone 4/4S days is around 6.5x. Single threaded performance often influences snappiness and UI speed/feel, so it's definitely an important vector to scale across.

iPhone Generations - Geekbench 3 (Multi Threaded)

Take into account multithreaded performance and the increase over the 3GS is even bigger, almost 17x now.

The only 3D test I could get to reliably run across all of the platforms (outside the original iPhone) was Basemark X. Again I had issues getting Basemark X running in offscreen mode on iOS 7 so all of the tests here are run at each device's native resolution. In the case of the 3GS to 4 transition, that means a performance regression as the 3GS had a much lower display resolution to deal with.

iPhone Generations - Basemark X (Onscreen)

Apple has scaled GPU performance pretty much in line with CPU performance over the years. The 5s scores 15x the frame rate of the iPhone 4, at a higher resolution too.

iPhone 5s vs. Bay Trail

I couldn't help but run Intel's current favorite mobile benchmark on the iPhone 5s. WebXPRT by Principled Technologies is a collection of browser based benchmarks that use HTML5 and js to simulate a number of workloads (photo editing, face detection, stocks dashboard and offline notes).

iPhone 5s vs. Bay Trail - WebXPRT (Chrome/Mobile Safari)

Granted we're comparing across platforms/browsers here, but the 5s as a platform does extremely well in Intel's favorite benchmark. The 5c by comparison performs a lot more like what we'd expect from a smartphone platform. The iPhone 5s is in a league of its own here. While I don't expect performance equalling the Atom Z3770 across the board, the fact that Apple is getting this close (with two fewer cores at that) is a testament to the work done in Cupertino.

At its launch event Apple claimed the A7 offered desktop class CPU performance. If it really is performance competitive with Bay Trail, I think that statement is a fair one to make. We're not talking about Haswell or even Ivy Bridge levels of desktop performance, but rather something close to mobile Core 2 Duo class. I've broken down the subtests in the table below:

WebXPRT Performance (time in ms, lower is better)
Chrome/Mobile Safari Photo Effects Face Detection Stocks Offline Notes
Apple iPhone 5s (Apple A7 1.3GHz) 878.9 ms 1831.4 ms 436.1 ms 604.6 ms
Intel Bay Trail FFRD (Atom Z3770 1.46GHz) 693.5 ms 1557.0 ms 542.9 ms 737.3 ms
AMD A4-5000 (1.5GHz) 411.2 ms 2349.5 ms 719.1 ms 880.7 ms
Apple iPhone 5c (Apple A6 1.3GHz) 1987.6 ms 4119.6 ms 763.6 ms 1747.6 ms

It's not a clean sweep for the iPhone 5s, but keep in mind that we are comparing to the best AMD and Intel have to offer in this space. I suspect part of why this is close is because both of those companies have been holding back a bit (there's no rush to build the fastest low margin parts), but it doesn't change reality.

 

CPU Performance GPU Architecture & Performance
POST A COMMENT

466 Comments

View All Comments

  • Bossrulz - Tuesday, October 22, 2013 - link

    Hi Anand. I am planning to buy my first iphone in the form of 5S.
    Is it worth to buy or to wait for iphone 6 ?
    Is it good to buy in USA or in the country where I live in ?
    Does iphone have internatiobnal warranty ?
    Reply
  • beast from the east - Wednesday, October 30, 2013 - link

    Intel only ever dominiated in sales, not processing power.

    I have installed Apple systems for 25 years, pre-Intel Macs, Apple's computers had twice the performance per clock cycle than the Intel equivalents. From the Motorola chips through to PowerPC.

    That's one of the many reasons why graphics, video and the scientific community used Macs.

    This chip is a beast, we all know it. With the best relationship in the mobile market with Developers that get paid for their work, a fantastic SDK, and Dev's talking about an hour to recompile to 64-bit. I think Apple will be alright.

    Trying to pick holes is just 'Roid-Rage, plain and simple.
    Reply
  • AngryCorgi - Thursday, November 14, 2013 - link

    The math used in this article is incorrect. It is 76.8 GFLOPS per CORE not for the entire GPU. The GPU should be capable of 307.2 GFLOPS. The rest of that chart is wrong as well in most places.

    @650MHZ, per core, G6430 = 166.4 GFLOPS, (*300/650) = 76.8 GFLOPS, (*4) = 307.2 GFLOPS
    Reply
  • ronnieryan - Saturday, January 11, 2014 - link

    @Anand : Sir could you make a review on the history of the iphone's home button? i would really want to know how tough the iPhone 5s home button. I was an android user and wanted to try something new. New in a sense of a 64 bit processor. But i want to know how strong is the 5s home button. Please do make a review of the home button, i would really want to know. email me for the link if its ok...Thanks :D Reply
  • casualphoenix - Wednesday, January 22, 2014 - link

    Hi Anand,

    Hope you're doing well today. My name is Nate Humphries and I'm the Tech/Science editor at CultureMass.com.

    I've been reading through your iPhone 5S and iPad Air articles in preparation for an article about the A7 chip, and it's been an extremely informative read. I wanted to ask if I could use your benchmark charts in my article if I provide proper citation back to your article. I think they would be very helpful for our readers.

    Let me know how that sounds, and I look forward to hearing back from you.

    Thanks,

    Nate Humphries
    Tech/Science Editor | CultureMass
    nate.humphries@culturemass.com
    Reply
  • besweeet - Sunday, March 30, 2014 - link

    I'm curious as to how this website did their 4G LTE tests... On AT&T, I could probably achieve those numbers. Swap that SIM out for one from T-Mobile, and regardless of signal strength, numbers would dramatically decrease instantly. Reply

Log in

Don't have an account? Sign up now