Final Words

I remember writing a tepid conclusion to my Sandy Bridge E review almost two years ago. At the time, both the LGA-2011 and LGA-1155 platforms were on the same architecture - Sandy Bridge. My conclusion ultimately boiled down to how much having 6 cores mattered to you. As LGA-2011 was the only way to get more than 4 cores in an Intel desktop system, if you needed the cores it was clearly the better option. For everyone else, the more affordable LGA-1155 route made more sense.

Today, the arrival of Ivy Bridge E does little to change that conclusion. In fact, compared to Sandy Bridge E, the IVB version only adds about 5% better performance, while shaving off around 20W under load. To further complicate matters, while SNB-E launched before Ivy Bridge, Ivy Bridge E shows up months after Haswell's debut for the rest of the desktop space. If you want Ivy Bridge E, you need to be comfortable with the fact that you're buying into an older architecture.


SNB-E (left) vs. IVB-E (right)

Although Haswell didn't break any records when it showed up on the desktop, there are definitely situations where it is clearly faster than even the fastest IVB-E SKU. Anything that doesn't make use of all six cores on a 4960X will likely be faster on a cheaper Haswell based 4770K. My guess is that this covers not only the overwhelming majority of the desktop market, but actually a good portion of the enthusiast desktop community as well.

The other downsides remain intact as well. Intel's X79 chipset remains very dated, even more so now that we have Z87 with Haswell. A fresh coat of paint and updated firmware isn't enough to hide the fact that you only get two 6Gbps SATA ports and no native USB 3.0 ports. All motherboard makers have worked around this by adding a plethora of 3rd party controllers to their motherboards, but I tend to prefer the native Intel solutions from a validation and compatibility standpoint. You also lose QuickSync support as there's no integrated GPU, although the two extra cores do help video transcoding go by a lot quicker.

In what I hope will be less than 22 months, Haswell E will likely fix many of these problems. Until that time comes, your decision is pretty simple. Ivy Bridge E picks up where Sandy Bridge E left off. If you have the money to spend and absolutely need any of the following:

1) More than 4 cores,
2) More than 4 DIMM slots,
3) More than 16 PCIe 3.0 lanes

...then Ivy Bridge E is your only option, and it's not a bad one at that. My biggest complaint about IVB-E isn't that it's bad; it's just that it could be so much more. With a modern chipset, an affordable 6-core variant (and/or a high-end 8-core option) and at least using a current gen architecture, this ultra high-end enthusiast platform could be very compelling. Unfortunately it's just not that today. I understand why (Xeon roadmaps and all), but it doesn't make me any happier about the situation. Instead we're left with the great option that is Haswell/Z87. If what you need falls outside of what Z87 can deliver then you're left with a decent, but very compromised (and pricey) alternative.

Overclocking & Power Consumption
Comments Locked

120 Comments

View All Comments

  • Kevin G - Wednesday, September 4, 2013 - link

    I believe the only way to get a specially binned or configured chip from Intel is to be an OEM and order a large volume. For an unlocked Xeon, the only chance Intel would release such a system would be under contract for a super computer contract that also used liquid cooling.

    OEM's like HP, Dell and Apple can also acquire specifically binned chips for a premium if the OEM wants something better or for a discount if Intel has excess inventories of low grade chips they need to sell.
  • 1Angelreloaded - Tuesday, September 3, 2013 - link

    Apple was the one who petitioned Intel to put the GPU on Die, so they could get away selling at higher prices with a lower cost to them. Do like I do BLAME APPLE.
  • colonelclaw - Tuesday, September 3, 2013 - link

    In conclusion, if you're an enthusiast who wants a high core count, Xeon is your only choice. For the price of the top-end Xeon you can buy a pretty decent second-hand car!
    We really need AMD to get back into the high-end game.
  • f0d - Tuesday, September 3, 2013 - link

    yeah cpu's were much better when amd competed in the high end
    lets just hope they can pull a good one out of somewhere
  • Casper42 - Tuesday, September 3, 2013 - link

    Hate to burst your bubble but AMD is going through a bit of a reset right now.
    Opteron 6400s in 2014. Minimal increase in performance.

    Next Gen Ground Up architecture is 2015, or when you get your AMD rep drunk at a trade show, you hear more likely 2016. If they can pull it off, this is where they will become a player again.

    Most of their attention at the moment is Trinity style APUs with minimal Core Counts just like Intel's desktop stuff.
  • DG4RiA - Tuesday, September 3, 2013 - link

    When are these E5 V2 Xeons gonna be out ? Why release this first instead of the new Xeons ?

    Hardly any performance increase after 22 months. I get that they want to be able to sell the 12-cores Xeon for three grands instead of one, but why can't they just add two extra cores to 4960X instead of just adding 200MHz ?
  • Casper42 - Tuesday, September 3, 2013 - link

    E5-2600 v2 is next week, Septh 10th
    E5-4600 v2 and E5-2400 v2 will be very end of 2013 or early 2014.
    E7 (Ivy EX) will also be like January 2014. 15 cores is what I am hearing there.
  • DG4RiA - Wednesday, September 4, 2013 - link

    Thanks for the info. I'm looking at dual socket build, so hopefully these V2 Xeon is worth the wait.
  • Shadowmaster625 - Tuesday, September 3, 2013 - link

    Intel is so greedy. They could have made this chip 10 core / 20 thread and the die size still would have been less than SNB-E. For a high end part, a chip this small is just a slap in the face. I hope their greed costs them lots of $$.
  • ShieTar - Tuesday, September 3, 2013 - link

    Sure. Also, the TDP at close to 4 GHz would have been 220W. And the majority of customers would have tried to overclock them and drive 300W through them. And either complained because they damage too easily, or because of the lousy overclocking potential.

Log in

Don't have an account? Sign up now