Final Words

I remember writing a tepid conclusion to my Sandy Bridge E review almost two years ago. At the time, both the LGA-2011 and LGA-1155 platforms were on the same architecture - Sandy Bridge. My conclusion ultimately boiled down to how much having 6 cores mattered to you. As LGA-2011 was the only way to get more than 4 cores in an Intel desktop system, if you needed the cores it was clearly the better option. For everyone else, the more affordable LGA-1155 route made more sense.

Today, the arrival of Ivy Bridge E does little to change that conclusion. In fact, compared to Sandy Bridge E, the IVB version only adds about 5% better performance, while shaving off around 20W under load. To further complicate matters, while SNB-E launched before Ivy Bridge, Ivy Bridge E shows up months after Haswell's debut for the rest of the desktop space. If you want Ivy Bridge E, you need to be comfortable with the fact that you're buying into an older architecture.


SNB-E (left) vs. IVB-E (right)

Although Haswell didn't break any records when it showed up on the desktop, there are definitely situations where it is clearly faster than even the fastest IVB-E SKU. Anything that doesn't make use of all six cores on a 4960X will likely be faster on a cheaper Haswell based 4770K. My guess is that this covers not only the overwhelming majority of the desktop market, but actually a good portion of the enthusiast desktop community as well.

The other downsides remain intact as well. Intel's X79 chipset remains very dated, even more so now that we have Z87 with Haswell. A fresh coat of paint and updated firmware isn't enough to hide the fact that you only get two 6Gbps SATA ports and no native USB 3.0 ports. All motherboard makers have worked around this by adding a plethora of 3rd party controllers to their motherboards, but I tend to prefer the native Intel solutions from a validation and compatibility standpoint. You also lose QuickSync support as there's no integrated GPU, although the two extra cores do help video transcoding go by a lot quicker.

In what I hope will be less than 22 months, Haswell E will likely fix many of these problems. Until that time comes, your decision is pretty simple. Ivy Bridge E picks up where Sandy Bridge E left off. If you have the money to spend and absolutely need any of the following:

1) More than 4 cores,
2) More than 4 DIMM slots,
3) More than 16 PCIe 3.0 lanes

...then Ivy Bridge E is your only option, and it's not a bad one at that. My biggest complaint about IVB-E isn't that it's bad; it's just that it could be so much more. With a modern chipset, an affordable 6-core variant (and/or a high-end 8-core option) and at least using a current gen architecture, this ultra high-end enthusiast platform could be very compelling. Unfortunately it's just not that today. I understand why (Xeon roadmaps and all), but it doesn't make me any happier about the situation. Instead we're left with the great option that is Haswell/Z87. If what you need falls outside of what Z87 can deliver then you're left with a decent, but very compromised (and pricey) alternative.

Overclocking & Power Consumption
POST A COMMENT

119 Comments

View All Comments

  • madmilk - Tuesday, September 03, 2013 - link

    If you invested in the 980 or the 970 (not the extreme ones) you got an awesome deal. Three years old, $600, overclockable, and within 30% of the 4960X on practically everything. Reply
  • bobbozzo - Tuesday, September 03, 2013 - link

    True, but my Haswell i5-4670k was around $200 for the CPU (on sale), and under $150 for an ASUS Z87-Plus motherboard.
    It's running on air cooling at 4.5/4.5/4.5/4.4GHz.

    I wasn't expecting it to be as fast for gaming as an i7-4770k, but looking at the gaming benchmarks in this article, I'm extremely pleased that I did not spend more for the i7.
    Reply
  • althaz - Tuesday, September 03, 2013 - link

    I had a launch model Core 2 Duo (the E6300) that with overclocking (1.86Ghz => 2.77Ghz) was a pretty decent CPU until last year (when I replaced it with an Ivy Bridge Core i5). That's what? Six years out of the CPU and it's still going strong for my buddy (to whom it now belongs). Reply
  • Kevin G - Tuesday, September 03, 2013 - link

    "My biggest complaint about IVB-E isn't that it's bad, it's just that it could be so much more. With a modern chipset, an affordable 6-core variant (and/or a high-end 8-core option) and at least using a current gen architecture, this ultra high-end enthusiast platform could be very compelling."

    I think that you answered why Intel isn't going this route earlier in the article. Consumers are getting the smaller 6 core Ivy Bridge-E chip. There is also a massive 12 core chip due soon for socket 2011 based servers. Harvesting an 8 core versions from the 12 core die is an expensive proposition and something Intel may not have the volumes for (they're not going to hinder 10 and 12 core capable dies to supply 8 core volumes to consumers). Still, if Intel wanted to, they could release an 8 core Sandy bridge-E chip and use that for their flag ship processor since the architectural differences between Sandy and Ivy Bridge are minor.

    The chipset situation just sucks. Intel didn't even have to release a new chipset, they could have released an updated X79 (Z79 perhaps?) that fixed the initial bugs. For example, ship with SAS ports enabled and running at 6 Gbit speeds.
    Reply
  • Sabresiberian - Tuesday, September 03, 2013 - link

    "The big advantages that IVB-E brings to the table are a ridiculous number of PCIe lanes , a quad-channel memory interface and 2 more cores in its highest end configuration."

    I'm going to pick on you a little bit here Anand, because I think it is important that we convey an accurate image to Intel about what we as end-users want from the hardware they design. 40 PCIe 3.0 lanes is NOT "ridiculous". In fact, for my purposes I would call it "inadequate". Sure, "my purposes" are running 3 2560x1440 screens @ 120Hz and that isn't the average rig today, but I want to suggest it isn't far off what people are now asking for. We should be encouraging Intel to give us more PCIe connectivity, not implying we have too much already. :)
    Reply
  • canthearu - Tuesday, September 03, 2013 - link

    Actually, you would find that you are still badly limited by graphics power, rather than limited by system bandwidth.

    A modern graphics card doesn't even stress out 8 lanes PCIe 3.0.

    I'm also not saying that it is a bad thing to have lots of I/O, It isn't. However you do need to know where your bottlenecks are. Otherwise you spend money trying to fix the wrong thing.
    Reply
  • The Melon - Tuesday, September 03, 2013 - link

    Not all high bandwidth PCI-e cards are graphics cards.

    I for one would like to be able to run 2x PCIe x16 GPU's and at least 1 each of LSI SAS 2008, dual port DDR or QDR Infiniband, dual port 10GBe and perhaps an actual RAID card.

    Sure that is a somewhat extreme example. But you can only run one of the expansion cards plus 2 GPU before you run out of lanes. This is an enthusiast platform after all. Many of us are going to want to do Extreme things with it.
    Reply
  • Flunk - Tuesday, September 03, 2013 - link

    Now you're just being silly, sending $10,000 on a system without any real increase in performance for anything you're going to do on a desktop/workstation is just stupid.

    Besides, if you're being incredibly stupid you'd need to go quad Xeons anyway (160 PCI-E lanes FTW).
    Reply
  • Azethoth - Tuesday, September 03, 2013 - link

    On the one hand, good review. On the other hand, my dream of a new build in the "performance" line is snuffed out. It just seems so lame making all these compromises vs Haswell, and basically things will never get better because the platform target is shifting to mobile and so battery life is key and performance parts will just never be a focus again. Reply
  • f0d - Tuesday, September 03, 2013 - link

    i feel the same way
    the future doesnt look too bright for the performance enthusiast - i dont want low power smaller cpu's i want BIG 8/12 core cpus and i dont really give a crap about power usage
    Reply

Log in

Don't have an account? Sign up now