Closing Thoughts (for Now)

It’s really up to the notebook manufacturers to make sure that their WiFi implementations are up to snuff, and that means doing more than a quick test for connectivity in ideal test conditions. The QA and engineering departments at the very least ought to be testing at 5, 25, 50, and 100 feet, using standard Windows operations (i.e. not just IxChariot or iPerf). If there are issues, they should be ironed out before customers (and reviewers) get the product. With that said, a good foundation for wireless networking can go a long way toward improving bandwidth and stability of your connection.

Intel’s adapters aren’t always the best, but they’re rarely the worst, provided you get one of the non-budget offerings (i.e. avoid the 1000 and 2000 series parts). Realtek unfortunately comes in near the bottom of my ranking list in many cases, but most notebooks with Realtek WiFi are already cutting corners—they’re the 1x1:1 2.4GHz only solutions that are so common. The fact is, whether you're using an adapter from Qualcomm/Atheros, Broadcom, Marvell, Realtek, or Ralink, you can have a good adapter in some cases or a downright awful one in others. Broadly speaking, most solutions with two streams end up being better than any of the single stream solutions.

Of course, it's not just about spatial streams. Oddly enough, for a company that has been on the forefront of wireless technologies, as Anand detailed in our MacBook Air 2013 review OS X is not scaling TCP window size beyond 64KB and thus fails to get optimal performance out of 802.11ac. (I assume an OS/driver patch will address this at some point, but that hasn't happened yet AFAIK.) OS and driver issues can definitely put a clamp on WiFi performance, which again is why the notebook makers need to exercise due diligence and test in real-world scenarios to ensure their hardware is working properly.

As I said earlier, one of the best things about 802.11ac wireless is that it raises the bar for wireless adapters. No one can get away with selling you an 11ac adapter without including at the bare minimum a dual-band chipset with support for 5GHz and 2.4GHz networks. If you live in a packed subdivision or apartment complex, 5GHz networking is almost required these days. Ideally, though, I want more than just the bare minimum; I want two 80MHz streams on my 802.11ac connections, and three would be even better. Intel’s 7260 provides two streams, and so do most of the current crop of 802.11ac routers. Hopefully, we won’t see as many solutions going for the bottom of the barrel single stream implementations; they’re not worse than 802.11n, but they’re not much better than two stream 5GHz 802.11n either.

Consider this a warning shot across the bow of the notebook manufacturers: we’re going to be paying more attention to your wireless implementations going forward. I can understand why a $500 or less budget laptop needs to cut every corner possible to hit that price point, but when we’re looking at $1000+ laptops we don’t want to see such blemishes. It may not always be as painful as using a bad LCD on an otherwise excellent laptop, but a bad WiFi implementation that loses connectivity if you’re more than 40 feet from the router in can be even worse in some cases.

We’ll be doing some full reviews of 802.11ac routers in the near future, including the Western Digital AC1300 and Linksys AC1200. The full reviews will better characterize performance as well as other features. Until then, at least right now it looks like most 802.11ac routers are using two streams (867Mbps maximum theoretical throughput), which is at least a nice upgrade over the 300Mbps so many 802.11n routers offer. Meanwhile, Apple's latest AirPort Extreme and Time Capsule go whole hog and give us three streams and up to 1300Mbps. Now if I could just get (Windows) laptops with three 802.11ac streams, I might actually be willing to give up my Gigabit Ethernet and wires!

 

A Quick Test of Real-World Wireless Performance
POST A COMMENT

135 Comments

View All Comments

  • 0ldman79 - Tuesday, July 16, 2013 - link

    Btw, the Intel cards are not all they're cracked up to be either. A $27 Compex Atheros 9281 chipset card blows Intel's wifi away.

    I haven't checked recently, but Trendnet is another that was using Atheros chips. They're cheaper than Linksys, D-Link, Netgear and Belkin and work much better.
    Reply
  • BreezeDM - Tuesday, July 09, 2013 - link

    yes do latency in full review please. I would also love to see something running DD-WRT. Reply
  • Flunk - Wednesday, July 10, 2013 - link

    "Killer" products are made by Broadcom so you can extrapolate based on the performance of their chip in this article. Reply
  • JarredWalton - Wednesday, July 10, 2013 - link

    This is what I'm hoping to avoid: don't extrapolate anything based on chipset manufacturer -- or even notebook manufacturer. Every company has had products with poo wireless performance, and most if not all have also had good products. Amped Wireless, for instance, uses a Realtek chipset but manages to get much better performance than you typically see from Realtek solutions (and of course it's a dual-band 2x2:2 solution).

    Killer is actually owned by Qualcomm now, so I would be surprised if they're using Broadcom devices, but regardless they do their own custom drivers and tuning, plus they're not using the cheap single-band 1x1:1 solutions. I reviewed their 1102 last year and it performed quite well, though not necessarily so much better as to negate any alternatives.
    Reply
  • kogunniyi - Monday, July 08, 2013 - link

    Interesting look. Can you test the Broadcom 4352? Reply
  • DonTHB - Monday, July 08, 2013 - link

    As part of future testing of 802.11ac it would be good to know how this version of WiFi works in an apartment building where each of your nine neighbors (three on one's own floor, three on the floor above and three on the floor below) have upgraded to this new standard.

    In a single family house it seems ideal, however.
    Reply
  • DanNeely - Tuesday, July 09, 2013 - link

    You've got several times as many, and significantly wider, channels at 5ghz as at 2.4ghz; so there's much less conflict over spectrum. In the US: 5ghz offers 6x80mhz (or 12x40, or 25x20mhz) vs 3x20mhz at 2.4ghz. The FCC may add enough additional spectrum to add 3 more 80mhz channels to the wifi to the 5ghz band in the near future. (The 5ghz situtation is more fragmented globally than 2.4ghz; but most of the world has similar amounts of total spectrum available).

    In addition because 5ghz is shorter ranged you'll have less interference from networks in adjacent buildings.

    http://specmap.sequence-omega.net/blog/2013/02/how...
    Reply
  • DonTHB - Wednesday, July 10, 2013 - link

    The issue isn't with the next building the issue are the neighbors that are each one wall away. What if they are first with an ac router and set up channel bonding?

    WiFi is best for a single family house and 802.11ac only improves this situation. In an MDU it is best to have wires that give you a communication channel you don't have to share.
    Reply
  • iwod - Monday, July 08, 2013 - link

    Any Reason why the only 2 antenna is working instead of 3?
    Any Reason we could believe we would have even better throughput then what we have tested today for 802.11ac, with better software, hardware etc? The speed is still no where near good enough.
    Why we only have 80Mhz implementation today when the spec allows up to 160Mhz?

    Lets hope decent company like Amped Wireless will give us a decent Router soon. Most if not all major consumer brand, including Linksys, Cisco, etc give us absolutely crap router.
    Reply
  • thesavvymage - Tuesday, July 09, 2013 - link

    up until a little bit ago, Linksys was a brand of Cisco's, so including them both as brand examples isnt really correct. They were however just sold to belkin, so Cisco doesnt even make consumer routers anymore Reply

Log in

Don't have an account? Sign up now