Recap: 802.11ac Wireless Networking

We’ve had quite a few major wireless networking standards over the years, and while some have certainly been better than others, I have remained a strong adherent of wired networking. I don’t expect I’ll give up the wires completely for a while yet, but Western Digital and Linksys sent me some 802.11ac routers for testing, and for the first time in a long time I’m really excited about wireless.

I’m not a good representative of normal PC users, but it has been a long time, relatively speaking, since we first saw Draft-N wireless options—Gary Key (now with ASUS) wrote about it what seems like an eternity ago, and in Internet time I suppose seven years is pretty darn close. Granted, 802.11ac has really been “done” for about two years now, but the first laptops to arrive with 11ac adapters are less than a month old—up until now, 11ac has been almost exclusively used for routers and bridges.

Before I get into a few performance specifics of 802.11ac testing, let me start by saying what is bad with 802.11n. The single biggest issue for me is the lack of quality implementations in so many of our devices. If you look at Apple’s MacBook Pro offerings, they’ve all been 3x3:3 MIMO for several years, offering connection speeds of up to 450Mbps. The problem with that “up to 450Mbps” is that it’s influenced by several factors.

Of course you need to know what sort of signal quality you have, but by far the bigger issue is this: are you talking about 2.4GHz 802.11n or 5GHz 802.11n? If you’re talking about the former, you can pretty much throw any thoughts of 450Mbps out the window. The bigger problem with “up to 450Mbps” is that the vast majority of laptops and routers don’t offer such support; Apple's 3x3:3 dual-band implementation is better than 99% of Windows laptops (and yes, I just made up that statistic).

About a year ago, I reviewed a router and repeater from Amped Wireless and found them to be good if not exceptional products. Compared to most of the wireless solutions people end up with, they were a breath of fresh air and I’ve actually been using them for the past year with very few complaints. On the other hand, I’ve had dozens of laptops come and go during the same time frame. Can you guess what the most common configuration is, even on more expensive laptops? If you said “single-band 2.4GHz 1x1:1”, give yourself a cookie.

We’re thankfully starting to see more laptops with dual-band 2x2:2 implementations, but even when you get that there’s still a big difference in actual performance, depending on notebook design, drivers, and other “special sauce”. We’ll see this in the charts on the next page, and it’s often more a statement of a particular laptop’s wireless implementation as opposed to representing what you might get from a particular wireless chipset.

In my opinion, the great thing about 802.11ac then is that any product claiming 802.11ac compliance is automatically dual-band. 11ac actually only works on the 5GHz channels, so for 2.4GHz support it’s no better than existing 802.11n solutions, but it’s fully backwards compatible and, as we’ll see in a moment, you really don’t want to use 2.4GHz wireless networking unless you’re primarily concerned with range of the signal. This is a shorter introductory piece, so don’t expect a full suite of benchmarks, but let’s just cut straight to the chase and say that there are a lot of situations in which I’ve found 802.11ac to be substantially faster than 802.11n.

A Quick Test of Real-World Wireless Performance
POST A COMMENT

135 Comments

View All Comments

  • name99 - Tuesday, July 09, 2013 - link

    (a) Yes, the intelligent thing would be to segregate legacy devices to 2.4 GHz. Always has been.

    (b) With 802.11n, the smart thing to do is put the device in Greenfield mode for the 5GHz band, which will will not allow connections from anything except n.

    (c) With 802.11ac, for better or worse there is no greenfield mode (maybe because pretty much no-one ever used it to run their networks optimally; Apple makes its use easy on Airport, but even there few people use it; apart from Apple no-one seems to even know it exists. You could maybe implement a greenfield mode equivalent in the router, just not allowing anyone not using ac to connect, perhaps by only broadcasting the SSID in 802.11ac format, but I don't know if that's within spec, or if anyone is doing it.)
    This makes it even more imperative to get slow devices onto 2.4GHz, otherwise all your time is going to be used up by them slowly dribbling out their bits.
    Reply
  • Gabik123 - Tuesday, July 09, 2013 - link

    Can't wait for my almond+... Reply
  • hrrmph - Tuesday, July 09, 2013 - link

    Good job putting the notebook computer manufacturers on notice that the performance of their wireless implementations are going to be measured (and how well they do counts a lot towards customer, and reviewer, satisfaction).

    They definitely need to get it right - especially on the expensive computers.

    With form factors shrinking, the day when there isn't room for a LAN port is fast approaching, even for high-end machines.

    -
    Reply
  • wrong - Tuesday, July 09, 2013 - link

    Thanks for the roundup. It's good to see data on this underserved topic.

    The big question for me is still "wireless or copper?", though, so I found myself wanting two things:
    * Stats for just running a patch cable to the test locations
    * More information about those outliers. It's a llittle disconcerting to see pauses and disconnects pruned from the data when they are actually the biggest influence on the quality of your experience.
    Reply
  • JarredWalton - Tuesday, July 09, 2013 - link

    The pauses are usually on the first run -- sometimes Windows still hasn't figured out where the other PC is on the network when I switch from 2.4 to 5GHz, or wired to wireless. It's maddening, but there are many times when I power up a laptop, open the path to my main PC in Explorer (\Nehalem if you're curious -- yup, my work system is still running a Bloomfield CPU!), and then... wait, get told the system isn't online, ping the IP address and get a response, try again, etc. and then about five minutes later Windows finally figures out where \Nehalem is "hiding". Grrr.... Mind you, this is with all the Windows Firewall stuff disabled as well. Reply
  • Wintek - Tuesday, July 09, 2013 - link

    Jarred
    Thanks for the review. I did want to share that the only things that matter to me are reliability and range. The definition of a positive experience for me is when my wife wants to use the facebook app on her iphone 5, and it works. I have a 15/5 Mbps internet connection, which means that the speeds of nearly every test case presented would result in the same experience for my wife - what I really want to know is if the device is going to require constant rebooting and if it's going to work out on the deck, which is ~75 feet away through 3 walls. I didn't even set up the 5GHz SSID in her phone because it can't even reach past the same room as the access point. As far as speed tests go, the test that would be useful to me is reporting the number of feet when the connection drops below a 15Mbps reliable transfer speed. I purchased a Western Digital My Net N900 router because of the 7 ethernet ports and reported speed to hard drives attached to the USB port. What a bad choice, none of the online reviews reported the failures (should have listened to the Newegg user reviews) of this device for what I am guessing is overheating. Initially I was very pleased with the device with 5 of the ethernet ports used and reasonable wireless 2.4GHz range. But the first two each died after ~3weeks. I then bought a Netgear switch and just used the router as an access point. So far the third WD router is still working, but I had to reset it last night because of slow/flaky connectivity. It's this kind of experience that I would love your help in avoiding!
    Reply
  • andrewaggb - Thursday, July 11, 2013 - link

    Totally with you. Reliability and range trump speed. Reply
  • whyso - Tuesday, July 09, 2013 - link

    Honestly one of the few things I honestly couldn't care less about on my 5mbps internet connection. No company offers faster internet in my location though the population demand is there and I don't expect faster than 20mbps in the next five years. Reply
  • designerfx - Wednesday, July 10, 2013 - link

    maybe you should test this with the Asus RT-AC66U? I imagine the results would be profoundly different, based on smallnetbuilder's test results.

    http://www.smallnetbuilder.com/wireless/wireless-r...
    Reply
  • JarredWalton - Wednesday, July 10, 2013 - link

    One should be on the way (or I think it might be the newer model). Reply

Log in

Don't have an account? Sign up now