4K for the Masses

After our experience with Trinity and Ivy Bridge builds for HTPC purposes, we had reached the conclusion that a discrete GPU was necessary only if advanced rendering algorithms (using madVR's resource intensive scaling algorithms) or 4K support was necessary. In fact, the 4K media player supplied by Sony along with their $25K 84" 4K TV was a Dell XPS desktop PC with a AMD graphics card's HDMI output providing the 4K signal to the TV. Ivy Bridge obtained 4K display support last October, but not over the HDMI port (which is the only way to get 4K content on supported TVs).

The good news is that Haswell's 4K over HDMI works well, in a limited sort of way. In our first experiment, we connected our build to a Sony XBR-84X900 84" 4K LED TV. The full set of supported 4K resolutions (4096x2160 @ 23 Hz and 24 Hz, as well as 3840x2160 @ 23 Hz, 24 Hz, 25 Hz, 29 Hz and 30 Hz) was driven without issues.

4K H.264 decode using DXVA2 Native and QuickSync modes in LAV Video Decoder works without issues (this works well in Ivy Bridge too, just that Ivy Bridge didn't have the ability to output 4K over HDMI or any other single video link). Using madVR with 4K is out of the question (even with DXVA2 scaling), but EVR and EVR-CP both work without dropping any frames.

Now, for the bad news: If you are hoping to drive the ~$1300 Seiki Digital SE50UY04 50" 4K TV (the cheapest 4K TV in the market right now), I would suggest some caution. Our build tried to drive a 3840x2160 @ 30 Hz resolution to the Seiki TV on boot, but the HDMI link never got locked (the display would keep flickering on and off). The frequency of locking was inversely proportional to the HDMI cable length. The NVIDIA GT 640s that we tested in the same setup with the same cables and TV managed to drive the 4K Quad FHD resolutions without problems. We were able to recreate the situation with multiple Seiki units.

At this juncture, we are not sure whether this is an issue with the ASRock Z87E-ITX board in particular or a problem for all Haswell boards. Intel suggested that the HDMI level shifter used by ASRock might not be up to the mark for 4K output, but that doesn't explain why the output to the Sony 84" TV worked without issues. In short, if you have a Seiki 4K TV and want to use a PC to drive that, we would suggest using a NVIDIA GT 640 or greater / AMD 7750 or greater for now. We will update this section as and when we reach closure on the issue with ASRock / Intel.

Network Streaming Performance - Netflix and YouTube QuickSync Gets Open Source Support, Regresses in Quality
Comments Locked

95 Comments

View All Comments

  • StardogChampion - Monday, June 3, 2013 - link

    I am wondering about this comment as well. Everything I've read seemed to indicate it would be available in mini-ITX form for building AIOs (so likely thin mini-ITX). Haswell will be a big disappointment without availability of the BGA packages in mini-ITX form.
  • Sivar - Monday, June 3, 2013 - link

    Thank you for the article.
    Note that x264 is a specific software encoder, not a type of video or a thing that can be accelerated ("While full x264 acceleration using QuickSync...")
    H.264 is the video standard.

    Also note that x264, the CPU-based encoding software, does not need to run in 2-pass mode to get great quality. 2-pass mode is ONLY if you want a specific file size regardless of quality. If you want a specific quality, you use quality mode. --CRF23, for example, returns small (though variable depending on content) file size and good quality.
  • ganeshts - Monday, June 3, 2013 - link

    Sivar,

    I did specifically want to mention full x264 acceleration using QuickSync -- That is because x264 is the H.264 encoder of choice for many users. The most beneficial addition to the CPU would be the ability to get hardware acceleration when using x264 with ANY set of options. That is simply not going to be possible with QuickSync (or, for that matter, any hardware-based encoder).

    Yes, agreed about the mistaken mention of 2-pass for improved quality. I will update it shortly.
  • Spawne32 - Monday, June 3, 2013 - link

    People always fail to realize what key element in every one of these releases, how big the enthusiast market truly is. All of us posting here on this comment section regarding this review are a small fraction of the overall market intel targets, this is part of the reason AMD suffers so tragically with their current lineup. Power consumption and price are the two biggest factors in a regular consumers mind when purchasing a PC, be it laptop or desktop. Performance numbers rarely play a factor. I don't know what AMD is doing over there but I long for a day when AMD can actually challenge intel and drive prices down even further, because these 230-400 dollar starting prices for "mainstream" intel processors proves once again why I refuse to invest in them regardless of performance. The marginal increase in speed in my day to day activities does not warrant the price being paid for something that is obsolete in 1-2 years. AMD's highest priced processor right now is 179.99, its comparable intel counterpart in haswell....349.99, you do the math.
  • bji - Monday, June 3, 2013 - link

    Either the increases in speed with each successive generation are great enough to render previous generations obsolete, or the increases in speed with each successive generation are small enough that the previous generation is not rendered obsolete. You can't have it both ways just to try to make Intel look bad, sorry.

    I don't know what margin Intel is making on these parts - do you? Remember that they are sinking large R & D and transistor budgets into these minor speed increases, and at the same time sinking lots of money into developing the next generation of process technology. If $300 is not worth it to you, don't buy the part; Intel won't be able to sustain their R & D budgets if nobody buys the results.
  • Deuge - Monday, June 3, 2013 - link

    If one of the GT3 or GT3e parts comes out in a refreshed NUC, id love to see a review of it from an HTPC perspective. Very interested to hear if it can handle Lanzcos + AR or Jinc.
  • dbcoopernz - Monday, June 3, 2013 - link

    Is the inability to use LAV with DXVA-native for madVR an Intel limitation? The devs of both the LAV filters and madVR have told me (on the doom9 forum) that DXVA-native is fine for madVR on AMD GPU's.
  • BMNify - Monday, June 3, 2013 - link

    DXVA native DOES work with AMD using LAV filters and MadVR... I'm using it as I type (watching MotoGP)
  • ganeshts - Monday, June 3, 2013 - link

    It also works with the Haswell piece. I will update the article ASAP.
  • BMNify - Monday, June 3, 2013 - link

    APU is the go to for HTPC builders. And stop with the power this and thermals that... undervolt it, toss in a Pico PSU, suspend to memory when not in use and enjoy. Take the hundreds saved and buy a Kabini or two as clients.

    If we're talking balls to the wall processing might, absolutely, lets talk Intel but not for a simple HTPC.

Log in

Don't have an account? Sign up now