Synthetics

As always we’ll also take a quick look at synthetic performance to get a better look at Titan’s underpinnings. These tests are mostly for comparing cards from within a manufacturer, as opposed to directly comparing AMD and NVIDIA cards. We’ll start with 3DMark Vantage’s Pixel Fill test.

Pixel fill is a mix of a ROP test and a test to see if you have enough bandwidth to feed those ROPs. At the same time the smallest increase in theoretical performance for Titan over GTX 680 was in ROP performance, where a 50% increase in ROPs was met with a minor clockspeed reduction for a final increase in ROP performance of 25%.

The end result is that with gains of 28%, Titan’s lead over GTX 680 is just a hair more than its increase in theoretical ROP performance. Consequently at first glance it looks like Titan has enough memory and cache bandwidth to feed its 48 ROPs, which given where we’re at today with GDDR5 is good news as GDDR5 has very nearly run out of room.

Moving on, we have our 3DMark Vantage texture fillrate test, which does for texels and texture mapping units what the previous test does for ROPs.

Oddly enough, despite the fact that Titan’s texture performance improvements over GTX 680 were only on the range of 46%, here Titan is measured as having 62% more texturing performance. This may be how Titan is interplaying with its improved bandwidth, or it may be a case where some of the ancillary changes NVIDIA made to the texture paths for compute are somehow also beneficial to proper texturing performance.

Finally we’ll take a quick look at tessellation performance with TessMark.

Unsurprisingly, Titan is well ahead of anything else NVIDIA produces. At 49% faster it’s just a bit over the 46% theoretical performance improvement we would expect from the increased number of Polymorph Engines the extra 6 SMXes bring. Interestingly, as fast as GTX 580’s tessellation performance was, these results would indicate that Titan offers more than a generational jump in tessellation performance, nearly tripling GTX 580’s tessellation performance. Though at this time it’s not at all clear just what such tessellation performance is good for, as we seem to be reaching increasingly ridiculous levels.

Civilization V Power, Temperature, & Noise
POST A COMMENT

336 Comments

View All Comments

  • CeriseCogburn - Tuesday, March 12, 2013 - link

    ROFL another amd fanboy having a blowout. Mommie will be down to the basement with the bar of soap, don't wet your pants.
    When amd dies your drivers will still suck, badly.
    Reply
  • trajan2448 - Saturday, March 16, 2013 - link

    Until you guys start showing latencies, these reviews based primarily on fps numbers don't tell the whole story. Titan is 4x faster than multi GPU solutions in real rendering. Reply
  • IUU - Wednesday, March 20, 2013 - link

    Just a thought: if they price titan say at 700 or 500 (that was the old price point for flagship cards), how on earth will they market game consoles, and the brave "new" world of the mobile "revolution"?
    Like it or not, high tech companies have found a convenient way to get away from the cutthroat competition of the pc-land(from there their hate and slogans like post-pc and the rest) and get a breath of fresh(money) air!

    Whether this is also good for the consumer in the long run, remains to be seen, but the fact is, we will pay more to get less, unless something unexpected happens.
    Reply
  • paul_59 - Saturday, June 15, 2013 - link

    I would appreciate any intelligent opinions on the merits of buying a 690 card versus a Titan, considering they retail for the same price Reply
  • bravegag - Tuesday, August 13, 2013 - link

    I have bought the EVGA nVidia GTX Titan, actually two of them instead of the Tesla K20 thanks to the benchmark results posted in this article. However, the performance results I got are nowhere close to the ones shown here. Running DGEMM from CUDA 5.5 and CUBLAS example matrixMulCUBLAS with my EVGA nVidia GTX Titan reaches no more than 220 GFlop/s which is nowhere close to 1 TFlop/s. My question is then, are the results presented here a total fake?

    I created the following project where some additional HPC benchmarks of the nVidia GTX Titan are included, the benchmark computing environment is also detailed there:
    https://github.com/bravegag/eigen-magma-benchmark
    Reply
  • bravegag - Wednesday, August 14, 2013 - link

    have anyone tried replicating the benchmark results shown here? how did it go? Reply

Log in

Don't have an account? Sign up now