Cortex A15: Kraken

While SunSpider wasn't a great performance target for Exynos 5250, Kraken is a different story entirely. The Cortex A15s complete the task significantly quicker than the competition, and as a result achieve competitive energy usage although at significantly higher peak power consumption.

 

 

Task Energy - Kraken - Total Platform

Despite the high peak power consumption of the Nexus 10 and its Cortex A15s, total energy usage is the lowest out of any of the contenders here since the Exynos 5250 is able to complete the benchmark so quickly. Intel is up next, followed by Qualcomm.

Once again we're seeing peak CPU power usage of ~3W, compared to < 1.5W for the competition. The performance advantage is enough to justify the added power, however in devices that simply can't dissipate this much heat (e.g. smartphones) I wonder what will happen.

Task Energy - Kraken - CPU Only

Isolate the CPU cores themselves and the race is much closer, this time with Qualcomm taking the lead.

Task Energy - Kraken - GPU Only

When mostly idle, the Mali-T604 on Samsung's 32nm LP (HK+MG) process barely sips power.

Kraken - Max, Avg, Min Power

Max Power Draw - Kraken - Total Platform

Max Power Draw - Kraken - GPU Only

Max Power Draw - Kraken - CPU Only

Average Power Draw

Average Power Draw - Kraken - Total Platform

Average Power Draw - Kraken - GPU Only

Average Power Draw - Kraken - CPU Only

Minimum Power Draw

Min Power Draw - Kraken - Total Platform

Min Power Draw - Kraken - GPU Only

Min Power Draw - Kraken - CPU Only

Cortex A15: SunSpider Cortex A15: RIABench
Comments Locked

140 Comments

View All Comments

  • metafor - Friday, January 4, 2013 - link

    It matters to a degree. Look at the CPU power chart, the CPU is constantly being ramped from low to high frequencies and back.

    Tegra automatically switches the CPU to a low-leakage core at some frequency threshold. This helps in almost all situations except for workloads that constantly keep the CPU at above that threshold, which, if you look at the graph, isn't the case.

    That being said, that doesn't mean it'll be anywhere near enough to catch up to its Atom and Krait competitors.
  • jeffkro - Saturday, January 5, 2013 - link

    The tegra 3 is also not the post powerful arm processor, intel obviously chose it to make atom look better.
  • npoe1 - Wednesday, January 9, 2013 - link

    From one of Ananad's articles: "NVIDIA recently revealed it was doing something similar to this with its upcoming Tegra 3 (Kal-El) SoC. NVIDIA outfitted its next-generation SoC with five CPU cores, although only a maximum of four are visible to the OS. If you’re running light tasks (background checking for email, SMS/MMS, twitter updates while your phone is locked) then a single low power Cortex A9 core services those needs while the higher performance A9s remain power gated. Request more of the OS (e.g. unlock your phone and load a webpage) and the low power A9 goes to sleep and the 4 high performance cores wake up."

    http://www.anandtech.com/show/4991/arms-cortex-a7-...
  • jeffkro - Saturday, January 5, 2013 - link

    A15 currently pulls to much power for smartphone but it makes for a great tablet chip as well as providing enough horse power to power basic laptops.
  • djgandy - Friday, January 4, 2013 - link

    The most obvious thing here is that PowerVR graphics are far superior to Nvidia graphics.
  • Wolfpup - Friday, January 4, 2013 - link

    Actually no, that isn't obvious at all. Tegra 3 is a two year old design, on a 2 generations old process. The fact that it's still competitive today is just because it was so good to begin with. It'll be nessisary to look at the performance and power usage of upcoming Nvidia chips on the same process to actually say anything "obvious" about them.
  • Death666Angel - Friday, January 4, 2013 - link

    According to Wikipedia, the 545 is from January '10, so it's got its a 3 year old now. The only current gen thing here is the Mali. The 225 is just a 220 with a higher clock, so it's about 1.5 to 2 years old.
  • djgandy - Friday, January 4, 2013 - link

    And a 4/5 year old atom and the 2/3 year+ old SGX545 aren't old designs?

    Look at the power usage of Nvidia. It's way beyond what is acceptable for any SOC design. Phones from 2 years ago used far less power on older processes than the 40nm T3! Just look at GLbenchmark battery life tests for the HTC One X and you'll see how poor the T3 GPU is. In fact just take your Nvidia goggles off and re-read this whole article.
  • Wolfpup - Friday, January 4, 2013 - link

    Atom's basic design is old, the manufacturing process is newer. Tegra 3 is by default at the biggest disadvantage here. You accuse me of bias when it appears you're actually biased.
  • Chloiber - Tuesday, January 8, 2013 - link

    First of all it's still 40nm.

    Second of all: you mentioned the battery benchmarks yourself. Go look at the Nexus 4 review and look how the international version of the One X fares. Battery life on the T3 One X is very good, if you take into account that it's based on 40nm compared to 28nm of the One XL and uses 4 cores.

Log in

Don't have an account? Sign up now