SKUs and Pricing

The AMD Opteron 6300 series has the same specifications as the 6200 series. The only changes are slightly higher clockspeeds and minor architectural improvements. So how much does AMD charge you for that?

AMD Opteron 6300 versus 6200 SKUs
Opteron 6300 Modules/
Integer
cores
TDP Clock
(GHz)
Price Opteron 6200 Modules/
Integer
cores
TDP Clock
(GHz)
Price
High Performance High Performance
6386SE 8/16 140W 2.8/3.2/3.5 $1392          
          6284 SE 8/16 140W 2.7/3.1/3.4 $1265
          6282 SE 8/16 140W 2.6/3.0/3.3 $1019
Midrange Midrange
6380 8/16   2.5/2.8/3.4 $1088          
6378 8/16   2.4/2.7/3.3 $867 6278 8/16 115W 2.4/2.7/3.3 $989
6376 8/16   2.3/2.6/3.2 $703 6276 8/16 115W 2.3/2.6/3.2 $788
          6274 8/16 115W 2.2/2.5/3.1 $639
          6272 8/16 115W 2.0/2.4/3.0 $523
6348 6/12   2.8/3.1/3.4 $575 6238 6/12 115W 2.6/2.9/3.2 $455
6344 6/12   2.6/2.9/3.2 $415 6234 6/12 115W 2.4/2.7/3.0 $377
High clock / budget High clock / budget
6328 4/8 115W 3.2/3.5/3.8 $575          
          6220 4/8 115W 3.0/3.3/3.6 $455
6320 4/8 115W 2.8/3.1/3.3 $293 6212 4/8 115W 2.6/2.9/3.2 $266
6308 2/4 115W 3.5 $501          
Power Optimized Power Optimized
6366HE 8/16 85W 1.8/2.3/3.1 $575 6262HE 8/16 85W 1.6/2.1/2.9 $523

The top models with slightly increased clockspeeds (+100MHz) are also slightly more expensive than the previous models, so you're basically paying more for more performance, which should hopefully work out as a net positive in the long run. More interesting are the midrange chips: the Opteron 6378 and 6376 are slightly more powerful than the 6278 and 6276 (same clock speeds but with architectural improvements), but they come with a 11-12% lower price.

Let's compare the AMD chips with Intel's offerings.

AMD vs. Intel 2-socket SKU Comparison
Xeon
E5
Cores/
Threads
TDP Clock
(GHz)
Price Opteron Modules/
Integer
cores
TDP Clock
(GHz)
Price
High Performance High Performance
2680 8/16 130W 2.7/3/3.5 $1723          
2665 8/16 115W 2.4/2.8/3.1 $1440 6386 SE 8/16 140W 2.8/3.2/3.5 $1392
2650 8/16 95W 2/2.4/2.8 $1107          
Midrange Midrange
          6380 8/16 115W 2.5/2.8/3.4 $1088
2640 6/12 95W 2.5/2.5/3 $885 6378 8/16 115W 2.4/2.7/3.3 $867
          6276 8/16 115W 2.3/2.6/3.2 $703
2630 6/12 95W 2.3/2.3/2.8 $639          
          6348 6/12 115W 2.8/3.1/3.4 $575
2620 6/12
95W
2/2/2.5 $406 6234 6/12 115W 2.6/2.9/3.2 $415
High clock / budget High clock / budget
2643 4/8 130W 3.3/3.3/3.5 $885          
2609 4/4 80W 2.4 $294 6320 4/8 115W 3.0/3.3/3.6 $293
2637 2/4 80W 3/3.5 $885 6308 2/4 115W 3.5 $501
Power Optimized Power Optimized
2630L 8/16 60W 2/2/2.5 $662 6366HE 8/16 85W 1.8/2.3/3.1 $575

Our Xeon E5-2600 review showed that the 8-core Xeon E5 was between 12% and 40% faster than the 8-module Opteron at more or less the same clocks (Xeon E5 2660 at 2.2GHz versus Opteron 6276 at 2.3GHz). The AMD benchmarks seem to indicate that the new Opteron is 5 to 15% faster at the same clocks, so a 6386SE at 2.8GHz might be able to stay close to the 2.4GHz Xeon 2665, but the higher TDP does not make it very attractive. The 6386SE 2.8GHz might make sense for some HPC people though. If you can recompile your code (and use FMA), AMD claims that a 2.5GHz 6380 is just as fast as a 2.9GHz 2690.

AMD may offer pretty good value in the midrange for the server market. We measured a 7% to 18% advantage (in the most important applications) for the Xeon with 12 threads compared to the Interlagos CPU with 16 integer cores. The 5% to 15% higher single-threaded performance of the Opteron 6378 (compared to a 6278) might be good enough to beat the 2640 in some benchmarks. Of course we have to see how well the Opteron fares in the power consumption measurements.

AMD also has a few very nice budget offerings: a 3GHz to 3.3GHz 6320 with 8 integer cores sounds good compared to the 4 cores of the 2609 at 2.4GHz in a market where performance per dollar is more important than performance per Watt.

AMD fails to convince the low power market. An 8 module chip at 1.8GHz will not be able to beat a 2GHz Xeon 2630L that will consume less power. The performance per watt of the Intel chip will be significantly better and the performance alone will be about 15 to 45% better.

So far...

Besides the low power offering, the Opteron 6300 series looks quite good. The specifications and pricing of the 6276 and 6278 in particular are attractive, and those chips are catering to the bulk of the market. But the benchmarks AMD presents are hardly convincing. The SPECJBB2005 test is easy to inflate, while the recompiled HPC benchmarks are interesting to a small niche of the market but useless to the rest of us. The jury is thus still out on what Abu Dhabi will mean for AMD servers, but we hope to have a verdict in the coming weeks.

Performance According to AMD
Comments Locked

22 Comments

View All Comments

  • gamoniac - Tuesday, November 6, 2012 - link

    On top of that, there is licensing costs. Windows Server 2012, for example, can be licensed per processor rather than by core count. That that comes into play, it can quickly inflate the TCO when comparing 4-socket vs 2-socket servers.
  • alpha754293 - Friday, November 9, 2012 - link

    There are a lot of programs that have different licensing methods.

    Ansys is per core.

    Windows actually makes it potentially quite cost effective - especially if you're running a virtualization server because you can throw a lot of VM tiles on a 8-module(?) Opteron 6300 so while you might have to pay more for the additional sockets, it might save you money because you don't have to run twice the number of servers to handle the same number of VM tiles. It really depends on what you're doing with it.

    (I think that Enterprise Linux is also licensed in the same way (per socket).)
  • alpha754293 - Friday, November 9, 2012 - link

    uhh....it depends.

    For some of our larger runs (both at my work and also my CFD runs at home, and also the research that I used to be doing for the university) - we had to write restart files on a regular interval in the event that something goes wrong or the power goes out or something like that.

    That's our kind of "backup". Although unlike say...the financial sector where they want five 9's uptime, (99.99999%), our restriction isn't THAT bad, but the professional HPC centers will have HA of some kind implemented.

    I think that you saw the last time that you ran the LS-DYNA benchmarks on the Opteron 6274 that the way that AMD are counting the cores (integer cores, not FP cores) - means that there was only like 7-8% performance benefit for HPC applications (which isn't much given twice the "core" count).

    The FPU itself runs into something akin to thread contention issues. (It still boils down to fighting for FPU resources).

    But if say...for example, you have a properly, well coded Photoshop - and they are learning on how to write MPP codes from HPC, it can take what they already do quite well, and make it run even better. Fewer cores perhaps, but if the cores ARE available, it will know how to best break up the problem so that it would be able to better run the same task in parallel vs. the more like...quasi-parallel (multi-threaded) approach that a lot of these programs use nowadays.

    (Imagine if you're batch processing images and it's able to spawn multiple instances of the batch solver/processor so that you can work on multiple images at the same time rather than working on them one at a time, but working on them in a multi-threaded manner.)

    Or imagine if the Flash plugin was multi-core capable/aware so when you have 146 tabs, it doesn't crash your browser session. ;o) (Oh the joys of being a researcher.)
  • Kevin G - Monday, November 5, 2012 - link

    Any idea when these will hit e-tail? I have a dual socket G34 board that two Opteron 6320 or two 6374's would be a good match. Still have decided between high clock and high core count. When you get up to 32 simultaneous threads, things really start to hit diminishing returns.
  • MySchizoBuddy - Monday, November 5, 2012 - link

    All of the new opteron chips can be used in 4P configurations. While none of the listed Xeons can. Can you add the Xeons that work in 4P configurations as well.
  • Stuka87 - Monday, November 5, 2012 - link

    Xeons that work in Quad Socket configs cost significantly more and do not really compete with the Opterons.

    But it would be interesting to see the cost to performance difference between the two.
  • Kjella - Monday, November 5, 2012 - link

    Right under "AMD Opteron 6300 versus 6200 SKUs" the leftmost column says Xeon E5, where it should say Opteron 6300. Anyway, now AMD can't even get a review sample out the door? Seriously? Either they're too incompetent or the benchmarks would be too embarrassing, either way it's not good.
  • PsiAmp - Tuesday, November 6, 2012 - link

    Why are you comparing two CPUs that have 64% price difference and say cheaper one has 12% less performance and is not attractive?

    You need to compare products of similar price points. Or take into account price difference, which you didn't mention at all.
  • JohanAnandtech - Tuesday, November 6, 2012 - link

    Can you be more specific and tell me which CPU comparison you are talking about? The CPUs I compared had a 4 to 15% price difference ( 6386 SE vs 2665 or 6366HE vs 2630L).
  • DeaDSOuLz - Monday, November 12, 2012 - link

    Strange I have had 2 Opteron 6376 for about 3 weeks. So getting them out early shouldn't have been an issue. Of course I bought about 2 thousand of the 6274 of the last 12 months, may have something to do with it.

Log in

Don't have an account? Sign up now