USB 3.0 Performance

The 13-inch rMBP features a slightly lower powered Platform Controller Hub (PCH) compared to the 15-inch model. While the 15-inch rMBP used Intel's HM77 chipset, the 13-inch model uses the QS77. The difference between the two is best summarized by the table below:

Power Consumption Comparison
  HM77 QS77
TDP 4.1W 3.6W
Average Power 1.22W 1.15W
Package Size 25x25mm 22x22mm
USB Ports (USB 3.0) 14 (4) 14 (4)
PCIe 2.0 Lanes 8 8
SATA Ports (6Gbps) 6 (2) 6 (2)
VGA Out Y Y
LVDS Out Y Y
Smart Response Tech & RAID Y Y
vPro & Active Management Tech N Y
Small Business Advantage Y Y

The QS77 features a slightly smaller package, and shaves off half a watt of TDP and 70mW of average power compared to the HM77. In the process you don't really lose anything either, in fact you gain some functionality: QS77 adds support for Intel's VT-d and TXT.

The downside is slightly higher cost per chip (+$6) but otherwise it's a net improvement, likely chosen to help deal with the smaller overall chassis volume and battery.

The QS77 chipset still supports up to four USB 3.0 ports, two of which are put to use by the 13-inch rMBP itself (one on each side of the chassis). I didn't have any USB 3 docks or enclosures with UASP support when I reviewed the 15-inch model, but I've since rectified that with the help of our friends over at HighPoint.

This is the RocketStor 5122B external USB 3.0 chassis:

The 5122B features two 3.5" SATA bays that can easily accept 2.5" drives (or a mixture of both). It's intended to be a quick backup solution, but I used it for a different purpose: to test maximum USB 3.0 throughput on the 13-inch rMBP.

The secret to the 5122B is that it has two dedicated USB 3.0 ports, one for each SATA connector. It makes cabling a bit of a mess, but it also gives you up to 10Gbps of peak, theoretical performance. In reality USB 3.0 is good for about 400 - 500MB/s (3.2Gbps - 4.0Gbps), making the 5122B sound a little less impressive but it should still be good enough to really showcase what Intel's QS77 can do inside the 13-inch rMBP.

I grabbed the two SSDs I had closest to me: Intel's SSD DC S3700 and Kingston's HyperX 3K, and filled both with (compressible) sequential writes. Combining both transfer rates, peak performance topped out at 706.8MB/s (average was 679MB/s).


Two USB 3.0 drives transferring at the same time

I then created a software RAID-0 array in OS X and measured average performance of around 650MB/s. Peak performance remained just over 700MB/s. This isn't quite as good as what you can get with Thunderbolt and the implementation isn't nearly as clean, but it's a lot cheaper ($89 if you can find a 5122B in stock).

Finally supporting USB 3.0 is just a huge improvement over previous generation Macs.

Retina Display: Scrolling & UI Performance Thunderbolt & WiFi Performance
Comments Locked

79 Comments

View All Comments

  • KPOM - Tuesday, November 13, 2012 - link

    The 13" MacBook Pro always had a dual core processor and never had discrete graphics. The Retina version is no different in that regard. If it isn't a "Pro" than neither is the non-Retina version.

    As an 11" MacBook Air user, the weight difference and extra thickness are more noticeable to me. Hopefully Apple comes out with an 11" MacBook Pro with Retina Display, since it does look very nice (I saw one in the store and it blew away the screen on my Air).
  • Arbee - Tuesday, November 13, 2012 - link

    Agreed. Much as the original Air was basically an engineering placeholder waiting for SNB to make it good, this seems to be a placeholder waiting for at least Haswell, and possibly Broadwell.
  • jeffbui - Tuesday, November 13, 2012 - link

    Anand, your aspect ratio chart is off. The MBPs are still 16:10
  • jeffbui - Tuesday, November 13, 2012 - link

    Oops, looks like you switched the 16:9 chart with the 16:10 chart.
  • iwod - Tuesday, November 13, 2012 - link

    I wonder why Apple do not all stick to the same 16:10 ratio. The New iMac is 16:9, while all notebook are 16:10.
  • Aenean144 - Wednesday, November 14, 2012 - link

    iMacs have >20 inch screens. When you get that big, there's enough vertical screen space so that wider aspect ratio screens are tolerable.

    For smaller screen laptops, vertical space is at a premium. 16:10 is at best a compromise to me. Going to 16:9 would make it less usable.
  • yserr - Tuesday, November 13, 2012 - link

    I have a MBP 15" (no Retina). I'm willing to give up GPU or quad, but not both, for portability.
    Do you think haswell will bring quad core to the 13" MBPr.

    I think with the dismiss of the 17" and the trend to smaller, light devices. The 15" will be the new 17" and the 13" will be the new 15".

    The 15" rMBP has two soldered ram banks the 13" rMBP has one.
    Are there 16GB modules which are reasonable priced for one bank (which apple could offer)?

    I will wait for haswell and than decide between 13" and 15".
    My dream machine will be 13" rMBP with 16GB Ram and quad.... so I hope haswell will deliver my dream :-)
  • iwod - Tuesday, November 13, 2012 - link

    Quad Core as standard and 2x Graphics Improvement. That is what i am hoping for as well. But with the 4x increase in Pixel count i doubt even Haswell is even good enough in Graphics Department. I just hope Broadwell will bring at least 3x performance over Haswell.
  • yserr - Tuesday, November 13, 2012 - link

    At least you see here (http://bit.ly/PalAfy - Haswell Preview) on the haswell slides that they will support 4k and High Resolution Displays. Lets see if they can deliver the performance needed for that. No question Broadwell will be better than Haswell. I hope Haswell will be fast enough for my needs.
  • Kevin G - Tuesday, November 13, 2012 - link

    Actually Ivy Bridge does support 4K displays if they are being driving by two DP.

    Haswell will implement DP 1.2 so it will be able to drive a 4K resolution display over a single cable. The GT3 + eDRAM versions of Haswell should be able to handle accelerated GUI without much issue. Gaming on the other hand at such high resolutions is something even high end GPU's (Radeon 7970, GTX 680) are struggling with.

Log in

Don't have an account? Sign up now