ASUS F2A85-V Pro In The Box

What we get in the box usually is the cream of the package - something that little bit extra that makes the whole product a more enjoyable experience.  Despite this, the price of the board usually indicates what level of goodies we get in the box, even if we have had a few surprises in the past.  With this product selling for $140 at launch, more expensive than the high end Trinity processors, we should feel that there's something in the box to make it worth while.  What we actually get in the box is:

Driver CD
IO Shield
User Manual
Four SATA Cables
Q-Connectors

The box could be a little more filled with joy - either a USB 3.0 panel or something similar.  As mentioned before, I would have liked to see the ASUS WiFi/Bluetooth module on the 'Pro' board, which would have included antenna and the module in the box.

Voltage Readings

[retracted]

Unfortunately we are unable to bring you the results of our OCCT test, due to a level of incompatibility between OCCT and current FM2 boards we have discovered that was not correctly reading the voltage.  This test in the future will require an OCCT update.

ASUS F2A85-V Pro Overclocking

Experience with ASUS F2A85-V Pro

Overclocking on a new platform is always a little frustrating – even if the principles of overclocking have not changed, or the architecture has not changed, a manufacturer may slightly confuse with different names for voltages, and there is no experience guiding how these processors may interact under voltage.

As such we have to take a methodical view to overclocking.  For almost all 24/7 CPU overclocks all we ever need to adjust is the CPU multiplier and the CPU voltage, so starting with the load multiplier and voltage that comes with the processors is never a bad thing.  In the case of our test bed we had an A10-5800K which has a maximum turbo multiplier of 42x and a load voltage of around 1.40 volts according to OCCT.  Using this information I performed overclock testing starting at an underclock of 35x and attempted to find the minimum voltage needed to be set in the BIOS to make this stable.  The system was then raised slowly with the multiplier, each time finding the minimum voltage required to be stable.

The third option that an overclocker may play with is Load Line Calibration.  This adjusts the voltage drop across the processor when under load (as causing the processor to do work causes a droop in the voltage reading) – a low LLC uses less energy overall in the system and is often dictated in part by the processor manufacturer.  However a high LLC often has the benefit of making an overclock stable.  In the case of ASUS motherboards we get a variety of options for LLC, but for the purposes of testing here it was left on automatic.

The experience of overclocking on the F2A85-V Pro was fairly standard for a top tier motherboard – we get two automatic overclock options in the OS in the form of ‘Fast’ and ‘Extreme’, as well as one in the BIOS and the TPU switch on board which both perform the ‘Fast’ overclock.  Manual overclock involves either playing with the AI Suite software until the system is unstable, then making permanent adjustments in the BIOS as required.  Without comparing against other motherboards yet I cannot say how well this board performs relative to others, but having the temperature reading issue does not help much.

Methodology:

Our standard overclocking methodology is as follows.  We select the automatic overclock options and test for stability with PovRay and OCCT to simulate high-end workloads.  These stability tests aim to catch any immediate causes for memory or CPU errors.

For manual overclocks, based on the information gathered from previous testing, starts off at a nominal voltage and CPU multiplier, and the multiplier is increased until the stability tests are failed.  The CPU voltage is increased gradually until the stability tests are passed, and the process repeated until the motherboard reduces the multiplier automatically (due to safety protocol) or the CPU temperature reaches a stupidly high level (100ºC+).

Our test bed is not in a case, which should push overclocks higher with fresher (cooler) air.  We are using a beQuiet Dark Pro CPU cooler with its stock fan.  This is a high-end air cooler, designed to tackle up to 150W of CPU power without issue.

Automatic Overclock:

Using the AI Suite software, we navigated to the TurboV Evo Automatic Tuning menu.  It offers two options – ‘Fast’ and ‘Extreme’.  Here are our results with these options.

With the ‘Fast’ option, the system rebooted indicating the CPU had been boosted to 43x and 100 MHz (4300 MHz total), with the IGP also boosted to 950 MHz.  This overclock passed both OCCT and PovRay.

With the ‘Extreme’ option the system rebooted and initialized stress testing with the processor.  The software started adjusting the CPU multiplier in the OS, rebooted then adjusted the APU frequency.  When all was said and done, the final result was a CPU overclock to 44x and 100 MHz (4400 MHz total), with the IGP also boosted to 1013 MHz.  This overclock passed PovRay but led to CPU errors in OCCT.

Manual Overclock:

With the manual overclock we left LLC on automatic, started at a CPU voltage of 1.1 volts and multiplier of 35x.  On a failed boot or unstable system, the voltage was raised by +0.025 and retested.  If a settings passed both PovRay and OCCT then the multiplier was raised.  To show the tests going into this, here is a direct screenshot from my results file:

The best way to represent these results is with the following graph:

At 4.5 GHz I was unwilling to go much further without any clear indication of the temperature of the processor.  Every setting would give a max reading of ~62C.  Judging by the results of overclockers online, these processors on air could potentially go up to 5.1 GHz with the correct settings or a better processor – I have seen 4.8 GHz on 1.50 volts stable enough to run simple benchmarks.  Overclocking a processor is like opening a packet of chocolate chip cookies – some cookies have a lot of chocolate chips and some have none.  You hope the cookie you get is full of chocolate chips.  In this case, I may have one without any.  If I took this result in isolation, I would say that AMD are really pushing these chips to the limit on clock speed – getting 300 MHz more than stock is not representative of recent processor releases.

ASUS F2A85-V Pro Software Test Setup, Power Consumption, POST Time
Comments Locked

66 Comments

View All Comments

  • Mugur - Thursday, October 11, 2012 - link

    File server - unchecked. Can't seem to find any board with 8 SATA, all are 7 + 1 eSATA... :-(
  • Medallish - Thursday, October 11, 2012 - link

    You make it sound A85X boards are somehow below average when it comes to number of ports, 7 ports is more than any Z77 or A75 based boards, if you have a fileserver that needs all 8 ports, then I'd suggest you buy a dedicated Sata controller for better performance anyway.
  • Medallish - Thursday, October 11, 2012 - link

    Also, Gigabyte boards with A85X doesn't have E-sata and therefore has all 8 Sata ports available.
  • Mugur - Friday, October 12, 2012 - link

    Gigabyte has 2 A85x boards. UP4 has 7 + 1. Only D3H has 8 and I haven't seen it in stock in my country... But this means there is hope.

    I have now an Asus with 850SB with 6 SATA 3 + PCIe card with 2 more. Unfortunately I haven't seen any mATX with 8 SATA so far.
  • hechacker1 - Thursday, October 11, 2012 - link

    But it's so easy to get a cheap sata card without RAID support and just use software raid (freenas comes to mind).

    Why deal with buggy controllers anyway. Modern software raid is easily configurable and very fault tolerant, and you can even do things like SSD caching at the front end.

    I do intend to build a NAS / server, and it's either Trinity or an i3.
  • Mugur - Friday, October 12, 2012 - link

    I will try with Windows Server 2012 and Storage Spaces myself. I need Windows for my server at home. Hopefully it can make a logical drive with parity from different types of physical drives... or I got it all wrong. :-)
  • cjs150 - Thursday, October 11, 2012 - link

    HTPC - unchecked

    TDP is way too high. That means significant active cooling, that means noise.

    Do not mind having one slow fan in an HTPC but not more.

    AMd need to have a sub 45W part on an FM2 board for it to be good for an HTPC. Do that at reasonable cost and AMD would clean up as nearest equivalent for intel is the i7-3770T which is expensive
  • Medallish - Thursday, October 11, 2012 - link

    HTPC - Rechecked

    TDP is acceptable on both A10, 5700 and 5800 65W and even 100W can be cooled passively with the right HTPC case(Streacom FC5-OD). You can also buy a Jetway Mini ITX FS1r2 board that will work with A10-4600(35W TDP). If Mobile sockets is too exotic for you, it should take no time to adjust the A10 of any kind really, ,to run a 3GHz and get the tdp below 45W, but eally since when was 65W too much for one slow fan?

    The Streacom case is btw. confirmed, I'm using it to cool down my current A8-3870k, works perfectly.
  • cjs150 - Thursday, October 11, 2012 - link

    Streamcom FC5 specs are for a maximum of 65W TDP so 100W is outside of their envelope. 65W TDP will work fine, just as long as the room is not too warm. So I guess your A8-3870 is either under-clocked or currently in the fridge!!

    For an HTPC, it needs to play HD material smoothly, rip HD content quickly and I assume play some games at reasonable speed but nothing too taxing.

    i7-3770T is way over-powered (and expensive) for that - and not as cool as it should be because intel use poor thermal paste on the IHS. AMD should therefore clean up this market. I prefer to have a CPU that is under the case thermal envelope to allow for margin for error.

    So if it works for you (and I really like the Streamcom case) great, but for me AMD need to get a 22 nm part out with a much lower thermal envelope
  • butdoesitwork - Thursday, October 11, 2012 - link

    1. Normally when a reviewer sees something anomalous he contacts the manufacturer prior to posting the review. Has there been any follow up with ASUS on the DPC latency spikes? Is a BIOS fix actually forthcoming? It's really hard to just leave it at "this would be slightly worrying for audio work"!

    2. The USB and SATA charts are nearly pointless. You're comparing a new AMD chipset against umpteen Intel motherboards. That's reasonable, but how does this new A85X chipset fare against older AMD 9xx chipsets? Is this new chipset an improvement? And if it isn't better, do they have an explanation why? And wouldn't that be another thing to ask ASUS about?

    3. Speaking of older chipsets, why does the Sabretooth only make a cameo?
    The X264 graphs are just silly! I thought we wanted a comparison between Thuban and Llano here, not just umpteen Core i7s! You did say "For AMD, this means we can compare the new Piledriver modules to Llano with its Stars cores, Phenom II and Thuban, and Zambezi with Bulldozer."

    4. With all these gobbledygook-named motherboards floating around, it sure would be nice if the "gaming benchmarks" graphs also denoted which (admittedly also gobbledygook-named) CPU was paired with each one. Like the "computation benchmarks" did. It would simplify validating statements like "Portal 2 seems to enjoy the GPU power, and CPU power does not matter as much.".

    5. On Dirt 3 "In the case of Trinity, the lack of grunt by the CPU does give it a lower result than the rest of our testing."

    Be that as it may, where does it stand compared with the Core i3? Thuban? Llano?
    Trinity isn't even meant to (and certainly can't) compete with Core i7, so why are these graphs so dominated by them? I wouldn't expect radical fluctuations between the Intel chipset boards. Are you looking for motherboard-influenced performance quirks? If so, shouldn't you also be comparing multiple A85X motherboards?

    6. Above ALL else, this is a new chipset. Accordingly, have you done any stability and reliability testing? Speed is nice, but what good is it if the new fangled SATA3 and USB3 ports exhibit device compatibility issues or data corruption? (Have you done a "diff" of your files in Linux? Or noted any bus reset errors in Linux logfiles? You know...the kinds of things Windows never tells you?)

Log in

Don't have an account? Sign up now