Platform Retargeting

Since the introduction of Conroe/Merom back in 2006 Intel has been prioritizing notebooks for the majority of its processor designs. The TDP target for these architectures was set around 35 - 45W. Higher and lower TDPs were hit by binning and scaling voltage. The rule of thumb is a single architecture can efficiently cover an order of magnitude of TDPs. In the case of these architectures we saw them scale all the way up to 130W and all the way down to 17W.

In the middle of 2011 Intel announced its Ultrabook initiative, and at the same time mentioned that Haswell would shift Intel's notebook design target from 35 - 45W down to 10 - 20W.

At the time I didn't think too much about the new design target, but everything makes a lot more sense now. This isn't a "simple" architectural shift, it's a complete rethinking of how Intel approaches platform design. More importantly than Haswell's 10 - 20W design point, is the new expanded SoC design target. I'll get to the second part shortly.

Platform Power

There will be four client focused categories of Haswell, and I can only talk about three of them now. There are the standard voltage desktop parts, the mobile parts and the ultra-mobile parts: Haswell, Haswell M and Haswell U. There's a fourth category of Haswell that may happen but a lot is still up in the air on that line.

Of the three that Intel is talking about now, the first two (Haswell/Haswell M) don't do anything revolutionary on the platform power side. Intel is promising around a 20% reduction in platform power compared to Sandy Bridge, but not the order of magnitude improvement it promised at IDF. These platforms are still two-chip solutions with the SoC and a secondary IO chip similar to what we have today with Ivy Bridge + PCH.

It's the Haswell U/ULT parts that brings about the dramatic change. These will be a single chip solution, with part of the voltage regulation typically found on motherboards moved onto the chip's package instead. There will still be some VR components on the motherboard as far as I can tell, it's the specifics that are lacking at this point (which seems to be much of the theme of this year's IDF).

Seven years ago Intel first demonstrated working silicon with an on-chip North Bridge (now commonplace) and on-package CMOS voltage regulation:

The benefits were two-fold: 1) Intel could manage fine grained voltage regulation with very fast transition times and 2) a tangible reduction in board component count.


2005 - A prototype motherboard using the technology. Note the lack of voltage regulators on the motherboard and the missing GMCH (North Bridge) chip.

The second benefit is very easy to understand from a mobile perspective. Fewer components on a motherboard means smaller form factors and/or more room for other things (e.g. larger battery volume via a reduction in PCB size).

The first benefit made a lot of sense at the time when Intel introduced it, but it makes even more sense when you consider the most dramatic change to Haswell: support for S0ix active idle.

Introduction: Stating the Problem The New Sleep States: S0ix
POST A COMMENT

247 Comments

View All Comments

  • kylewat - Tuesday, February 12, 2013 - link

    Why is Appl the largest market cap company in the world? Reply
  • Spunjji - Thursday, October 18, 2012 - link

    Fuckwit. Reply
  • nirmalv - Sunday, October 07, 2012 - link

    Anandtech being a hardware site,its more inclined to keenly flow hardware devices with new architecture and innovations. iphone brings in
    1, A new A7 chip design and a novel 3 core graphics core
    2, A new 3 microphone parabolic sound receiving design(which likely will become the new standard)
    3, A new sim tray design(which will also likely become the new standard)
    4, New sony BSI stacked sensor (the 13 mpx version will likely be the rage next year).
    5, The first time that we have a 32 nm LTE chip which will give all day usage.
    6, New thinner screen with incorporated touch panel and 100 % RGB

    I am not sure about samsung but can anyone enlighten me about S3's technical achievements?
    Reply
  • nirmalv - Sunday, October 07, 2012 - link

    Sorry make that a 28 nm LTE baseband Reply
  • centhar - Sunday, October 07, 2012 - link

    99.998% of iPhone users just don't care about that. Really they don't.

    Geeks like me who do, are too damn smart to sell our souls to the such a god damned, locked down and closed system to even bother to care.
    Reply
  • Magik_Breezy - Sunday, October 14, 2012 - link

    2nd that Reply
  • Spunjji - Thursday, October 18, 2012 - link

    3rd Reply
  • CaptainDoug - Tuesday, October 23, 2012 - link

    4th, Reply
  • solipsism - Tuesday, October 09, 2012 - link

    Of course a company that releases one device per product category per year as well as one with the greatest mindshare is going to have more articles.

    But what happens when you add up all Samsung phones against all Apple phones in a given year?

    What happens when you don't count the small blogs that only detail a small aspect of a secretive product but count the total words to get a better feel for the effort spent per company's market segment?

    I bet you'll find that AT spends a lot more time covering Samsung's phones than Apple's.
    Reply
  • Spunjji - Thursday, October 18, 2012 - link

    This. I generally trust their editorial, but the focus on Apple prevails. One just has to read accordingly. Reply

Log in

Don't have an account? Sign up now