When I first started writing about x86 CPUs Intel was on the verge of entering the enterprise space with its processors. At the time, Xeon was a new brand, unproven in the market. But it highlighted a key change in Intel's strategy for dominance: leverage consumer microprocessor sales to help support your fabs while making huge margins on lower volume, enterprise parts. In other words, get your volume from the mainstream but make your money in the enterprise. Intel managed to double dip and make money on both ends, it just made substantially more in servers.

Today Intel's magic formula is being threatened. Within 8 years many expect all mainstream computing to move to smartphones, or whatever other ultra portable form factor computing device we're carrying around at that point. To put it in perspective, you'll be able to get something faster than an Ivy Bridge Ultrabook or MacBook Air, in something the size of your smartphone, in fewer than 8 years. The problem from Intel's perspective is that it has no foothold in the smartphone market. Although Medfield is finally shipping, the vast majority of smartphones sold feature ARM based SoCs. If all mainstream client computing moves to smartphones, and Intel doesn't take a dominant portion of the smartphone market, it will be left in the difficult position of having to support fabs that no longer run at the same capacity levels they once did. Without the volume it would become difficult to continue to support the fab business. And without the mainstream volume driving the fabs it would be difficult to continue to support the enterprise business. Intel wouldn't go away, but Wall Street wouldn't be happy. There's a good reason investors have been reaching out to any and everyone to try and get a handle on what is going to happen in the Intel v ARM race.

To make matters worse, there's trouble in paradise. When Apple dropped PowerPC for Intel's architectures back in 2005 I thought the move made tremendous sense. Intel needed a partner that was willing to push the envelope rather than remain content with the status quo. The results of that partnership have been tremendous for both parties. Apple moved aggressively into ultraportables with the MacBook Air, aided by Intel accelerating its small form factor chip packaging roadmap and delivering specially binned low leakage parts. On the flip side, Intel had a very important customer that pushed it to do much better in the graphics department. If you think the current crop of Intel processor graphics aren't enough, you should've seen what Intel originally planned to bring to market prior to receiving feedback from Apple and others. What once was the perfect relationship, is now on rocky ground.

The A6 SoC in Apple's iPhone 5 features the company's first internally designed CPU core. When one of your best customers is dabbling in building CPUs of its own, there's reason to worry. In fact, Apple already makes the bulk of its revenues from ARM based devices. In many ways Apple has been a leading indicator for where the rest of the PC industry is going (shipping SSDs by default, moving to ultra portables as mainstream computers, etc...). There's even more reason to worry if the post-Steve Apple/Intel relationship has fallen on tough times. While I don't share Charlie's view of Apple dropping Intel as being a done deal, I know there's truth behind his words. Intel's Ultrabook push, the close partnership with Acer and working closely with other, non-Apple OEMs is all very deliberate. Intel is always afraid of customers getting too powerful and with Apple, the words too powerful don't even begin to describe it.

What does all of this have to do with Haswell? As I mentioned earlier, Intel has an ARM problem and Apple plays a major role in that ARM problem. Atom was originally developed not to deal with ARM but to usher in a new type of ultra mobile device. That obviously didn't happen. UMPCs failed, netbooks were a temporary distraction (albeit profitable for Intel) and a new generation of smartphones and tablets became the new face of mobile computing. While Atom will continue to play in the ultra mobile space, Haswell marks the beginning of something new. Rather than send its second string player into battle, Intel is starting to prep its star for ultra mobile work.

Haswell is so much more than just another new microprocessor architecture from Intel. For years Intel has enjoyed a wonderful position in the market. With its long term viability threatened, Haswell is the first step of a long term solution to the ARM problem. While Atom was the first "fast-enough" x86 micro-architecture from Intel, Haswell takes a different approach to the problem. Rather than working from the bottom up, Haswell is Intel's attempt to take its best micro-architecture and drive power as low as possible.

Platform Retargeting & Platform Power
POST A COMMENT

248 Comments

View All Comments

  • 1008anan - Saturday, October 06, 2012 - link

    Haswell will sport 32 single precision or 16 double precision flops per cycle per core for its desktop and high tdp mobile skews [at least 30 watt and up].

    Can anyone speculate on how many single precision and double precision flops per cycle per core Haswell will execute for its low TDP skews? For example the less than 10 watt skews? the 15 watt skews?

    I would also be interested in learning speculation about how many execution units (or shader cores if you prefer standard nomenclature) the low TDP Haswell products will have.
    Reply
  • 1008anan - Saturday, October 06, 2012 - link

    Haswell will be able to execute 16 double precision or 32 single precision flops per clock per core for desktop and high TDP mobile skews [at least 30 watts and up].

    Can anyone speculate on how many flops per cycle per core the sub 10 watt and 15 watt Haswell skews will execute? Similarly I would be interested in hearing speculation about how many graphic execution units (shader cores) the sub 10 watt and 15 watt Haswell products will come with. Any speculation on graphics clock speed?

    Is it possible that the high end tock 22 nm Xeon server parts could have 32 double precision or 64 single precision flops per clock per core?
    Reply
  • Laststop311 - Saturday, October 06, 2012 - link

    Best explanation of haswell I've read to date. Good Job Anand. Reply
  • lmcd - Saturday, October 06, 2012 - link

    Interestingly, this might be the first chance in forever AMD has at competing with Intel. If Haswell's sole goal is to hit lower power targets, and Piledriver hits its 15% and Steamroller its 15% over that, AMD is suddenly right up with Intel's i5 series with its GPU-less chips, and upper i3-range with their APUs, which is absolutely perfect positioning: most i5 purchases are for people planning to pair with discrete graphics, while most i3 series seem to go to the PC buyer looking for low price tags.

    The one downside is that the i7 series is Intel's money-maker: the clueless people who think they're getting maximum performance but are really just feeding the binning system and buying an unbalanced PC.
    Reply
  • milkod2001 - Sunday, October 07, 2012 - link

    u got it wrong bro, Intels money maker is not i7, it's i3 and i5(low end and a bit of mainstreem)

    as for Haswell, on paper it looks too good to be true as Ivy did last year and ended up everything but impressive.

    Since Intel conroe core(2006) there actually were not any significant improvements worth mentioning.There's not much extra what todays CPUs can do and Pentium4 could not a decade ago.

    I would love to see some innovations user could really benefit from(something like reattachable,thin, light, portable, firm solar panel hooked at the back of screen or even build in as last layer into screen itself) and not that crap Intel/AMD gives us year by year.
    Reply
  • xeizo - Sunday, October 07, 2012 - link

    Anand is very right, it's everything about power savings which in effect makes smaller and more portable form factors possible!

    As for mainstream perfomance, my Linux workstation still uses a Q9450 rev. C1 from 2008 clocked at 3.2GHz and a SSD of course. That box feels in every way as snappy as my Windows-box with Sandy Bridge at 4.8GHz. Which means, I really didn't need more performance than what C2Q already gave. Of course the SB-box benchmarks much faster, about twice as fast in most things, but the point is for myself I really don't need that perfromance except for some occasional game.

    But I could use a smaller, cooler running device instead!
    Reply
  • Teknobug - Tuesday, October 16, 2012 - link

    LOL my Linux system still runs a Sempron and it's still fast. Reply
  • oomjcv - Sunday, October 07, 2012 - link

    Very interesting article, enjoyed reading it.

    Something I would like to see is a decent comparison between Intel's and AMD's plans. Many might be able to outline the basics, but a thorough article on the subject should be rather enlightening... Comparing their design philosophies, architectures, possible pitfalls and successes etc, pretty much what's been done with this article only with both companies.
    I know it might be time consuming but I imagine it could be quite a nice read.
    Reply
  • zwillx - Monday, January 21, 2013 - link

    agreed; it's difficult to find the common ground with so many different chip architectures. x86 is a big enough competition but now it's getting split wide open with ARM and BIG/litle etc etc so it's always helpful to have either more charts or real world examples lol.

    My take from this article though: Haswell still won't have the prowess to beat the GT650. I have GTX660 in my laptop w/ Optimus (TM). It works. Runs a game on HD4000 at 17 FPS. On the GTX660 I get 100+ fps, and am able to use higher anti-aliasing settings. So, clearly a 100% improvement over Ivy bridge is only putting the chip into "mediocre" category by the time its released.
    Reply
  • alexandrio - Sunday, October 07, 2012 - link

    "The bigger concern is whether or not the OEMs and ISVs will do their best to really take advantage of what Haswell offers. I know one will, but will the rest?"

    I am curious who is that one OME that will do their best to really take advantage of Haswell offers?
    Reply

Log in

Don't have an account? Sign up now