When I first started writing about x86 CPUs Intel was on the verge of entering the enterprise space with its processors. At the time, Xeon was a new brand, unproven in the market. But it highlighted a key change in Intel's strategy for dominance: leverage consumer microprocessor sales to help support your fabs while making huge margins on lower volume, enterprise parts. In other words, get your volume from the mainstream but make your money in the enterprise. Intel managed to double dip and make money on both ends, it just made substantially more in servers.

Today Intel's magic formula is being threatened. Within 8 years many expect all mainstream computing to move to smartphones, or whatever other ultra portable form factor computing device we're carrying around at that point. To put it in perspective, you'll be able to get something faster than an Ivy Bridge Ultrabook or MacBook Air, in something the size of your smartphone, in fewer than 8 years. The problem from Intel's perspective is that it has no foothold in the smartphone market. Although Medfield is finally shipping, the vast majority of smartphones sold feature ARM based SoCs. If all mainstream client computing moves to smartphones, and Intel doesn't take a dominant portion of the smartphone market, it will be left in the difficult position of having to support fabs that no longer run at the same capacity levels they once did. Without the volume it would become difficult to continue to support the fab business. And without the mainstream volume driving the fabs it would be difficult to continue to support the enterprise business. Intel wouldn't go away, but Wall Street wouldn't be happy. There's a good reason investors have been reaching out to any and everyone to try and get a handle on what is going to happen in the Intel v ARM race.

To make matters worse, there's trouble in paradise. When Apple dropped PowerPC for Intel's architectures back in 2005 I thought the move made tremendous sense. Intel needed a partner that was willing to push the envelope rather than remain content with the status quo. The results of that partnership have been tremendous for both parties. Apple moved aggressively into ultraportables with the MacBook Air, aided by Intel accelerating its small form factor chip packaging roadmap and delivering specially binned low leakage parts. On the flip side, Intel had a very important customer that pushed it to do much better in the graphics department. If you think the current crop of Intel processor graphics aren't enough, you should've seen what Intel originally planned to bring to market prior to receiving feedback from Apple and others. What once was the perfect relationship, is now on rocky ground.

The A6 SoC in Apple's iPhone 5 features the company's first internally designed CPU core. When one of your best customers is dabbling in building CPUs of its own, there's reason to worry. In fact, Apple already makes the bulk of its revenues from ARM based devices. In many ways Apple has been a leading indicator for where the rest of the PC industry is going (shipping SSDs by default, moving to ultra portables as mainstream computers, etc...). There's even more reason to worry if the post-Steve Apple/Intel relationship has fallen on tough times. While I don't share Charlie's view of Apple dropping Intel as being a done deal, I know there's truth behind his words. Intel's Ultrabook push, the close partnership with Acer and working closely with other, non-Apple OEMs is all very deliberate. Intel is always afraid of customers getting too powerful and with Apple, the words too powerful don't even begin to describe it.

What does all of this have to do with Haswell? As I mentioned earlier, Intel has an ARM problem and Apple plays a major role in that ARM problem. Atom was originally developed not to deal with ARM but to usher in a new type of ultra mobile device. That obviously didn't happen. UMPCs failed, netbooks were a temporary distraction (albeit profitable for Intel) and a new generation of smartphones and tablets became the new face of mobile computing. While Atom will continue to play in the ultra mobile space, Haswell marks the beginning of something new. Rather than send its second string player into battle, Intel is starting to prep its star for ultra mobile work.

Haswell is so much more than just another new microprocessor architecture from Intel. For years Intel has enjoyed a wonderful position in the market. With its long term viability threatened, Haswell is the first step of a long term solution to the ARM problem. While Atom was the first "fast-enough" x86 micro-architecture from Intel, Haswell takes a different approach to the problem. Rather than working from the bottom up, Haswell is Intel's attempt to take its best micro-architecture and drive power as low as possible.

Platform Retargeting & Platform Power
POST A COMMENT

248 Comments

View All Comments

  • wumpus - Friday, October 05, 2012 - link

    There is a reason Atom is getting creamed in the phone space by ARM. Also the only way TDP is going to change is with major increases in battery technology. X Joules (typically changed to W/hr in battery speak, but why not stick with SI units) means X seconds a 1 W or X/n seconds at n Watts.

    On the high end, everything that won the war for CISC (namely, Intel's manufacturing skills) is even more true than when they won. There isn't going to be another. That doesn't mean that a chip designed for all out performance is going to have any business competing with ARM on MIP/W. If they wanted to compete on battery life, they would have scaled down the depth and breadth of the queue, not increased it.

    Actually, I was ready to go into full rant when I saw the opening. Then I checked that "ultrabook" meant 1.8GHz i3s. It is quite possible (although I still doubt it is a good way to use a battery) to build a chip that will do that and have low power. I just don't think that Haskel is anyway designed to be that chip
    Reply
  • FunBunny2 - Friday, October 05, 2012 - link

    -- everything that won the war for CISC (namely, Intel's manufacturing skills) is even more true than when they won

    It's been true since P4 that the "real" cpu is a RISC engine fronted by a x86 ISA translator. Intel tried to sell a ISA level RISC chip (twice). Not so hot. But Intel does know RISC. I've always wondered why they used all that transistor budget the way they did, rather than doing the entire instruction set in hardware, as they could have. It's as if IBM turned all the 370s into 360/30s.
    Reply
  • Penti - Saturday, October 06, 2012 - link

    It was Pentium Pro that switched to a modern out of order micro-ops powered CPU. I.e. P6. It's only the front end that speaks x86. Intel's own RISC designs like i960 ultimately failed and EPIC even more so when it failed to outdo AMD and Intel server processors in enterprise applications. In reality customers only switched to Itanium because they already had made up their mind before there even was any product thus killing at the time more appropriate Alpha, MIPS and PA-RISC processors. But as soon as those where fased out, Intel's x86 compatible chips had already gained the enterprise features that it missed previously and that set those older chips apart.

    The front end and x86 decode doesn't use that much space in modern processors at all. CPU architecture aren't really all that important it's today largely about the features it supports, the gpu, video decode/processor etc. ARM just made it into the out-of-order superscalar era in 2011 with A9, superscalar in-order in 2008 with Cortex A8. Atom is kinda designed like a P5 cpu. I.e. superscalar in-order, and moves to an out-of-order design next year. Intel's first superscalar design was in 1988.

    ARM just needs to be fast enough, it was fairly easy to replace SH3, Motorola DragonBall, i386 design in the mobile space it was even Intel that did it to a large part. And earlier 8086-stuff had already been left behind by that time. Now what's impressive is the integration and finish of the ARM SoC's. It was Intel that didn't want companies like Research In Motion to continue use low-power Intel x86-chips in their handheld devices. That only changes when Intel sold off the StrongARM/XScale line in 2006. Intel has no reason to start create custom ARM ISA chips again as they can compete with them with x86 chips which they spend much larger time to adapt development tools and frameworks for any way. Atom as a whole has a much larger market then XScale had on it's own. Remember that Intel dropped stuff like RAID/Storage-processors too. Having Intel as a Marvell in ARM chips today wouldn't have changed anything radically.
    Reply
  • Penti - Saturday, October 06, 2012 - link

    Also FPU/SIMD has been a large part in later ARM designs and implementations. It's really a big deal as we saw with the chips lacking some of those parts. You shouldn't forget how important those bits are. Others have failed because they didn't take it seriously. That was 15-20 years ago even. Doesn't mean they are yet fighting x86-64 chips in high-end servers and workstation though. We will certainly see them entering that market by 2015 though. Reply
  • Arbee - Friday, October 05, 2012 - link

    Cortex A9's big IPC improvement came from going out-of-order, which kind of ruins your argument.

    Similarly, the X360/PS3 PowerPC chips are strict in order and super ultra slow as a result - at 3.2 GHz they can't match a PowerMac G5 with out-of-order at 2.2 GHz. But I suspect that wasn't the point - Sony and MS can claim the eye-popping (in 2006) 3.2 GHz figure, and the heat production is certainly less than a PPC G5.
    Reply
  • wumpus - Friday, October 05, 2012 - link

    Has anyone seen an A9 in the wild? I don't doubt huge IPC improvements (back when O-O-O was new, it tended to double performance). My statement is that it will kill GIPS/W and that Intel can much more easily design a chip that can beat it in both raw performance and GIPS/W (note that your mention of heat production agrees with me).

    Also note I suspect that the goal of A9 is to keep the power low enough to keep it out of where Intel wants to go. A rough guess is that ARM might have a chance with dual issue o-o-o, but past that (roughly where Pentium Pro was designed) they can't really go.
    Reply
  • ElvenLemming - Friday, October 05, 2012 - link

    The Cortex A9 has been in most major phone/tablet SoCs for the past two or so years. Apple's A5, A5X; Samsung's Exynos 4210, 4212, 4412; TI's OMAP 4 series; Nvidia's Tegra 2 and 3.

    Cortex A15 is probably what you were thinking of that we've yet to see out in the wild. It's out-of-order like the A9, but with a great deal of other improvements.
    Reply
  • ericore - Friday, October 05, 2012 - link

    Currently AMD has the upper hand on the notebook segment on battery life. Haswell changes that, but as is always the case with Intel, they will be pricey. And that's why AMD will still have 50% of the market because vendors are cheap.

    Power savings are much less relevant on desktop front; I don't care so much about power as i do of heat. AMD X4 700, ship an awsome 4 core cpu for 75$. Technically, it has all that you need from a CPU. Add a Radeon 7770 (again cheap) and your golden. Ya Intel is faster, but both Intel and Nvidia have shitty low end products and that's even more true when you think of atom. 5-15% single threaded performance is not anything that is going to burry AMD lol.

    On top of that, AMD has an atom KILLER, a contracts with all major console vendors.

    Haswell will have surprisingly little impact on AMD; what I am saying is if you look at your own expectations, you'll realize they were highly inflated and you'll wonder why it didn't do more damage to AMD. I've explained the why. Nevertheless broadwell is a significant threat, and we'll probably see AMD start to lose market share (much more than with haswell) unless AMD can fight back and it will; but nobody knows if it will be enough.
    Reply
  • A5 - Friday, October 05, 2012 - link

    Uh, wow. Reply
  • Zink - Saturday, October 06, 2012 - link

    http://www.tomshardware.com/reviews/gaming-cpu-rev... Reply

Log in

Don't have an account? Sign up now