Mobile Trinity Lineup

Trinity is of course coming in two flavors, just like Llano before it. On the desktop, we’ll have Virgo chips, but those are coming later this year (around Q3); right now, Trinity is only on laptops. On laptops the codename for Trinity is Comal. AMD has also dropped wattages on their mobile flavors, so where Llano saw 35W and 45W mobile parts, with Comal AMD will have 17W, 25W, and 35W parts. (The desktop Trinity chips will apparently retain their 65W and 100W targets.) There aren’t a ton of mobile Trinity chips launching today; instead, AMD has five different APUs and each one targets a distinct market segment. Here’s the quick rundown:

AMD Trinity A-Series Fusion APUs for Notebooks
APU Model A10-4600M A8-4500M A6-4400M A10-4655M A6-4455M
“Piledriver” CPU Cores 4 4 2 4 2
CPU Clock (Base/Max) 2.3/3.2GHz 1.9/2.8GHz 2.7/3.2GHz 2.0/2.8GHz 2.1/2.6GHz
L2 Cache (MB) 4 4 1 4 2
Radeon Model HD 7660G HD 7640G HD 7520G HD 7620G HD 7500G
Radeon Cores 384 256 192 384 256
GPU Clock (Base/Max) 497/686MHz 497/655MHz 497/686MHz 360/497MHz 327/424MHz
TDP 35W 35W 35W 25W 17W
Package FS1r2 FS1r2 FS1r2 FP2 FP2
DDR3 Speeds DDR3-1600
DDR3L-1600
DDRU-1333
DDR3-1600
DDR3L-1600
DDRU-1333
DDR3-1600
DDR3L-1600
DDRU-1333
DDR3-1333
DDR3L-1333
DDRU-1066
DDR3-1333
DDR3L-1333
DDRU-1066

As a Bulldozer-derived architecture, Trinity uses CPU modules that each contain two Piledriver CPU cores with a shared FP/SSE (Floating Point) unit. From one perspective, that makes Trinity a quad-core or dual-core processor; others would argue that it’s not quite the same as a “true” quad-core setup. We’re not going to worry too much about the distinction here, though, as we’ll let the performance results tell that story. Compared to Llano’s K10-derived CPU core, clock speeds in Trinity are substantially higher—both the base and Turbo Core clocks. The top-end A10-4600M has a base clock that’s 53% higher than the 1.5GHz A8-3500M we reviewed when Llano launched, while maximum turbo speeds are up 33%. Unfortunately, while clock speeds might be substantially higher, Trinity’s Piledriver cores have substantially longer pipelines than Llano’s K10+ cores; we’ll see in the benchmarks what that means for typical performance.

The GPU side of the equation is are also substantially different from Llano. Llano used a Redwood GPU core (e.g. Radeon 5600 series) with a VLIW5 architecture (e.g. the Evergreen family of GPUs), and the various APUs had either 400, 320, or 240 Radeon cores. Trinity changes out the GPU core for a VLIW4 design (Northern Islands family of GPU cores), and this is the only time we’ve seen AMD use VLIW4 outside of the 6900 series desktop GPUs. The maximum number of Radeon cores is now 384, but we should see better efficiency out of the design, and clock speeds are substantially higher than on Llano—the mobile clocks are typically 55-60% higher. Again, how this plays out in terms of actual performance is something we’ll look at momentarily.

Looking at the complete lineup of Trinity APUs, it’s interesting to see AMD using a new A10 branding for the top models while overlapping the existing A8 and A6 brands on lower spec models. We only have the A10-4600M in for testing right now, but AMD provided some performance estimates for the various performance levels. The A10-4600M delivers 56% better graphics performance and 29% better “productivity” performance than the A8-3500M—note that we put productivity in quotes because it’s not clear if AMD is talking specifically about CPU performance or some other metric. The new A8-4500M delivers 32% faster graphics performance than the A8-3500M and 19% higher productivity, which appears to be why it gets the same “A8” classification. Finally, even the single-module/dual-core A6-4400M delivers 16% better graphics than the A8-3500M and 5% higher productivity. I suspect that the various percentages AMD lists are more of an “up to” statement as opposed to being typical performance improvements, as it seems unlikely that 192 VLIW4 cores at 686MHz could consistently outperform 400 VLIW5 cores at 444MHz.

If we consider target markets, the A10-4600M will be the fastest Trinity APU for now, and it should go into mainstream laptops that will provide a well rounded experience with the ability for moderate gaming along with any other tasks you might want to run. The A8-4500M takes a pretty major chunk out of the GPU (one third of the GPU cores are gone along with a slight drop in maximum clock speed) while maintaining roughly 80% of the CPU performance, so it can fit into slightly cheaper laptops but will likely drop gaming performance from “moderate” to “light”. The A6-4400M ends up as the extreme budget offering, with higher clocks on the CPU making up for the removal of two cores; the GPU likewise gets a slight trim relative to the A8-4500M, and we’re now down to half the graphics performance potential of the A10-4600M. All of the standard voltage parts support up to DDR3-1600 memory, with low voltage DDR3-1600 and ultra low voltage DDR3-1333 also supported.

The other two APUs are low voltage and ultra low voltage parts, which should work well in laptops like HP’s “sleekbooks”—basically, they’re for AMD-based alternatives to ultrabooks. The A10-4655M has about 87% of the CPU performance potential of the A10-4600M, with 70% of the GPU performance potential, and it can fit into a 25W TDP. The A6-4455M drops the TDP to 17W, matching Intel’s ULV parts, but again the CPU and GPU cores get cut. This time we get two Piledriver cores, 256 Radeon cores, and lowered base and maximum clock speeds. The low/ultra low voltage parts also drop support for DDR3-1600 memory, moving all RAM options down one step to DDR3-1333, low voltage DDR3-1333 and ultra low voltage DDR3-1066.

The final piece of the puzzle for any platform is the chipset. AMD is using their A70M (Hudson M3) chipset, which is the same chipset used for Llano. That’s not really a problem, though, as the chipset provides everything Trinity needs: it has support for up to six native SATA 6Gbps ports, four USB 3.0 ports (and 10 USB 2.0 ports), RAID 0/1 support, and basically everything else you need for a mainstream laptop. PCI Express support in Trinity remains at PCIe 2.0, but that’s not really a problem considering the target market. PCIe 3.0 has been shown to improve performance in some GPGPU workloads with HD 7970, but that’s a GPU that provides nearly an order of magnitude more compute power (over 7X more based on clock speeds and shader count alone).

That takes care of the overview of AMD’s Mobile Trinity lineup, and Anand has covered the architectural information, so now it’s time to meet our prototype AMD Trinity laptop.

Improved Turbo, Beefy Interconnects and the Trinity GPU Meet the AMD Trinity/Comal Prototype
Comments Locked

271 Comments

View All Comments

  • JarredWalton - Tuesday, May 15, 2012 - link

    I think it *needs* to be at $600 to sell, because SNB + GT 540M is already at $600. However, HP has hinted that their sleekbooks with Trinity will start at $600 and $700 for the 15.6" and 14" models, respectively. "Start at" and "comes with a reasonable amount of RAM and an A10 APU" are not the same thing. Until HP actually lists full specs and a price, I have to assume that the $600 price tag for the 15" model is going to be 4GB RAM, 250GB HDD, and an A6-4400 APU. Hopefully I'm wrong, but the fact is we don't know Trinity's real price yet, so in the article I'm referring to the price I think it should be at in order to provide a good value.
  • hechacker1 - Tuesday, May 15, 2012 - link

    As most people I assume are coming from the Core 2 Duo style laptops, I would like to see a comparison of trinity with that.

    I know core i processors are fast, but I don't know if AMD has caught up with Core 2 performance.
  • tipoo - Tuesday, May 15, 2012 - link

    Even with Llano they had caught up, with Trinity the margin will only be larger. Use this to compare whatever you want

    http://www.anandtech.com/bench/Product/399?vs=62
  • cosminmcm - Monday, May 21, 2012 - link

    How about comparing Llano to a core 2 quad? And at about the same frequency.
    Here you go:

    http://www.anandtech.com/bench/Product/399?vs=50
  • This Guy - Wednesday, May 16, 2012 - link

    Sorry to be rude. I really think you missed the point of this chip.

    The CPU in Trinity is close to a 17W CPU with a 17W GPU. It performs about the same as an intel 17W chip. It's graphics engine is far better and the CPUs should cost about the same. The only real disadvantage over 17W Sandy Bridge is that in a prototype chasis Trinity uses more power, but a few watts should be shaved on production models.

    This means AMD has caught up to Intel again! Yes AMD is going to lose spectacularly when ULV Ivy Bridge comes out and I doubt Trinity is going to scale at higher power but at low power, AMD has caught up!

    (Yes I know that Sandy Bridge includes a GPU but if you look at your benchmarks, ULV Intel with a dGPU scores similar to Trinity when transcoding [The only really CPU limited test in this review])
  • ET - Wednesday, May 16, 2012 - link

    Something I just read at The Tech Report: when using MediaEspresso to transcode video, the result of VCE was much smaller than QuickSync or software, yet they didn't notice a difference in quality. I would like to know what your experience was. If that's really the case I'd prefer VCE over other Intel's solution even if it's slower.
  • Riek - Wednesday, May 16, 2012 - link

    As far as i know VCE is not yet supported or been made available by AMD.

    All those tests are due to openCL and not VCE since that part cannot be reached at this point in time. (yes blame AMD for that one, this is already taking 6months and still their is nothing about VCE)
  • Spunjji - Wednesday, May 16, 2012 - link

    You're mistaken, there.

    Quote from Page 2:
    "Trinity borrows Graphics Core Next's Video Codec Engine (VCE) and is actually functional in the hardware/software we have here today. Don't get too excited though; the VCE enabled software we have today won't take advantage of the identical hardware in discrete GCN GPUs"
  • karasaj - Wednesday, May 16, 2012 - link

    When you go to the llano review, the HD4000 gets stomped by Llano's desktop graphics offering. When you look at Trinity, the notebook version of trinity barely beats Llano. Why is it that Intel can practically fit the full power of their IGP (get nearly the same performance from notebooks as from 3770k) but AMD's is drastically weaker?

    Also - will we see a weaker HD4000 in the dual core/cheaper IVB variants? I think Trinity desktop GPU will stomp on the HD4000 and might actually be a viable budget gaming solution as long as CPU improvements are good enough. We could see it take down quite a bit of the discrete graphics market I think, considering the HD4000 already can do that.
  • JarredWalton - Wednesday, May 16, 2012 - link

    It's an odd move by Intel, perhaps, but I think it makes sense. The mobile Sandy Bridge and Ivy Bridge parts basically get the best IGP Intel makes (HD 3000/4000), and what's more the clocks are just as high and sometimes higher than the desktop parts. Yeah, how's that for crazy? The i7-3720QM laptop chips run HD 4000 at up to 1.25GHz while the desktop i7-3770/K/S/T runs the IGP at up to 1.15GHz. SNB wasn't quite so "bad" with HD 3000, as the 2600K could run HD 3000 at 1.35GHz compared to 1.3GHz on the fastest mobile chips.

    Anyway, the reason I say it kind of makes sense is that nearly all desktops can easily add a discrete GPU for $50-$100, and it will offer two or even three times the performance of the best IGP right now. On a laptop, you get whatever the laptop comes with and essentially no path to upgrade.

    For AMD, if you look at their clocks they have them cranked MUCH higher on desktops. The maximum Llano clocks for mobile chips are 444MHz, but the desktop parts are clocked up to 600MHz. What's even better for desktop is that Llano's GPU could be overclocked even further on many systems -- 800MHz seems to be achievable for many. So basically, AMD lets their GPU really stretch its legs on the desktop, but laptops are far more power/heat constrained. It will be interesting to see what AMD does with desktop Trinity -- I'd think 900MHz GPU core speeds would be doable.

Log in

Don't have an account? Sign up now