MIPS launched the 1074K CPS in September 2010, and till now, we have seen only one announcement regarding the processor core actually having gone into silicon. Plenty of companies seem to have licensed the IP, but we haven't seen any SoCs announced with the 1074K. eSilicon announced last year that they had taped out the 1074K CPS in Globalfoundries 28nm process, and that they are on the lookout for potential licensees of their hardened IP core. It is clear that at least two years seem to be the bare minimum for volume shipment of announced IP cores. ARM is in the same boat, with the Cortex-A15 being a known entity as far back as February 2011.

Given that the high end proAptiv core delivers performance similar to the Cortex-A15, it appears that MIPS is a little bit late to the game. Being late to the game and not delivering any advantage would have been a disaster. Fortunately, MIPS seems to have been frugal with the area compared to ARM. However, the lack of licensees using the cores in the family to make a push in the high end mobile space is also a detriment. While Qualcomm and Broadcom are MIPS licensees, they are fully committed to ARM as their architecture of choice in the fast-growing mobile space.

Despite the fact that Google is paying attention to MIPS as a platform for Android, it looks likely that the architecture of choice in the mobile / tablet space will become a two way shootout between ARM and x86. That said, the easiest way to lose a fight is to not turn up for it. MIPS must continue to create high performance cores and try to get into mid-range smartphones / tablets for a start. They have a foothold in the low-end space, thanks to Ingenic's tablet platform.

However, the new proAptiv series does have some bright spots for consumers. One can look forward to more powerful home networking equipment and set top boxes. The cores serve to ensure that ARM can't easily encroach upon MIPS's traditional turf. Changing consumer behaviour and the rising popularity of OTT streaming has given ARM a slight opening in the STB / STB replacement space. The new proAptiv cores will definitely be able to help MIPS in this area.

Fortunately, for MIPS, the interAptiv and microAptiv family members seem to hold the upper hand in the battle against ARM's lineup. In the interAptiv series, MIPS has stolen a march over ARM with respect to the multi-threading feature. The integration of a powerful DSP engine in the microAptiv series should open up new markets and strengthen MIPS's position in its current ones.

General production availability of the proAptiv and interAptiv cores is slated to be in the middle of 2012. The microAptiv cores are available for production now. MIPS has also developed strategic relationships with multiple vendors for complementary IP and enabling technologies in order to speed up the SoC development of their licensees.

We look forward to seeing silicon based on the MIPS processor IP cores soon.

interAptiv and microAptiv Architectures
Comments Locked

40 Comments

View All Comments

  • CrankUpThePowerIgor - Thursday, May 10, 2012 - link

    We have 32 bit cores?

    Phones need 64 bit as much as they need 4 cores, but I'm sure it would sell ;)
  • jjj - Thursday, May 10, 2012 - link

    You keep mentioning die area but never list some actual numbers (or maybe i missed those?). Die are wise it is amusing that they only compare to A15 .Since it seems that it can't clock as high as A15 it's not a fair comparison.The 2 don't target the same markets anyway so w/e.
    The lower clocked core(s) solution sounds way too much like Nvidia's 4+1 ,wonder if they'll have anything to say about that.

    "it looks likely that the architecture of choice in the mobile / tablet space will become a two way shootout between ARM and x86"
    Unless China decides to go with it's own ISA and then things will get a bit more complicated.
  • bji - Thursday, May 10, 2012 - link

    That is a terrible marketing name.
  • bji - Thursday, May 10, 2012 - link

    Am I really reading that right? Are those memory controllers really that small? Sounds barely visible to the naked eye.
  • ganeshts - Thursday, May 10, 2012 - link

    Yes, they are really small. Usually, there are some peripherals around them on the die, and then, there is the packaging which makes it visible to the eye :)
  • metafor - Thursday, May 10, 2012 - link

    It should be noted that Krait is on the 28LP node currently and that corresponds to its frequency of 1.5GHz. ARM's A15 numbers on 28LP are around ~2GHz (OMAP 5430 being the primary example).
  • ganeshts - Thursday, May 10, 2012 - link

    We can't have too many inferences from the frequency of operation.

    With appropriate choice of libraries, usage of low Vt cells etc., Qualcomm could have probably gotten Krait to run at 2 GHz had they wished. It probably means that Qualcomm is satisfied with 1.5 GHz for their target market. ARM's A15 numbers will vary widely, and the OMAP 5430 is just one case..

    We should actually compare operating frequency with the same set of libraries / same process node / same operating corner, but different vendors quote different circumstances.. So, it is not easy to make an apples-to-apples comparison.
  • Daniel Egger - Thursday, May 10, 2012 - link

    I'm really not sure you're all getting the point here with all the ARM comparison. MIPS is not even trying (at least not hard) to get into the smartphone game. MIPS is a really strong player in the consumer grade network equipment market -- think WLAN APs and routers, DSL Modems, Mifis, etc.. There's almost no ARM or x86 anywhere to be found but since networking speeds are ever increasing an architecture update is sorely needed!

    You can compare MIPS and ARM and x86 (and if you're serious about it you'd also include Freescale) as much as you'd like but the matter of fact is: Each of these architecture has at least one weak spot that disqualifies it for some market segments:
    - Most ARM based processors have lousy I/O possibilities (crappy or no network, no PCIe)
    - Most MIPS implementations do not have powerful GPUs and CPU performance is not the best
    - x86 needs too many external components and it is effectively only available from one vendor and non-synthesizable
    - Freescale (PPC) implementations also do not have powerful GPUs, are too power hungry and far too expensive for most uses
  • ganeshts - Thursday, May 10, 2012 - link

    Oh! MIPS is definitely trying to get a toehold in the smartphone market. In fact, I looked at a few of their smartphones in their HQ (all being sold in China).

    The drawbacks you indicate are not a problem with the processor IP. Rather, it is the SoC vendor's choice on what peripheral IPs are integrated along with the processor.
  • Penti - Thursday, May 10, 2012 - link

    Naw they are not really trying, the Ingenic chip the Chinese devices uses is a custom design by the Chinese firm Ingenic. Not CPUs designed by MIPS Technologies. Those has to compete with Chinese as well as cheap semi-local Taiwanese ARM-designs with ARM RTL-cores and embedded baseband too. Nothing much happening there. Not from Mips Tech standpoint any way. The MIPS SoCs can use the same third party synthesizeable IP GPUs, video engines as the ARM counterparts and so on. But don't expect much in the form of baseband modems on MIPS processors. Smartphones run fine with either x86, ARM or MIPS though. Android has support for them all. A few years ago there were some other architectures involved in the business too. Let's see if anybody uses MIPS Technologies IP cores to build phones first before shouting anything. We won't really have the same situation if you can't use RTL-cores at any fab and multiple vendors delivering solutions on that. It's hard to compete if there is just one vendor with their own custom designs. Freescale will continue their i.MX ARM line for phones/tablets. ARM is taking over the whole CE field including TVs, blu-ray players and so on too for that matter. Still some good MIPS-designs around though. But there are good designs of most stuff around. Tools and software certainly would draw you to ARM though.

Log in

Don't have an account? Sign up now