Gigabyte GA-Z77X-UD3H – Overview

For $160, there are a significant number of Z77 motherboards to look at, but Gigabyte wants you to buy theirs.  In this case, it is the Z77X-UD3H - their mid range, probably highest selling, Z77 SKU.  As a reviewer, it is important to not solely focus on the high end products, as it is the ones lower down the range that are often the best selling and closer to what people actually get in a system.  Too many high-end boards can leave a reviewer out-of-touch to what actually sells.

With the GA-Z77X-UD3H, we have a good priced Z77 board with a myriad a features to tempt users.  Gigabyte is pushing their digital power delivery and tweakable power delivery options, but we also have an mSATA port, a very good (and new-ish) automatic overclocking utility, and a cheaper board with all four video outputs.  The audio/network controller choice is a little different, and we actually get power/reset buttons on a mid range Gigabyte board.

Overall, I did not come across many things wrong with the board.  There are certain areas that could do with a little improvement, such as memory compatibility or fan controllers, but it seems like a user will have to stretch the wallet a bit for them in other products.  At $160, the board is definitely probing the lower end of the enthusiast market, so could be ideal for a more budget-oriented build.

Visual Inspection

Black and blue seems to be the order of the day when it comes to mainstream boards, as indicated by some of the previous boards but also with the Gigabyte GA-Z77X-UD3H.  Perhaps there is a sale on black PCBs and blue heatsinks?

Joking aside, Gigabyte intends to release two high-end boards initially – the Z77X-UD5H and the Z77X-UD3H, both in regular and WiFi variants.  The WiFi variant comes with a PCIe x1 WiFi card to be used in the first PCIe slot on the board, and aerials for the outside of the case.

We have the Z77X-UD3H in to review for the launch of Ivy Bridge, which should retail for around $160 MSRP.  Gigabyte has chosen a few different directions regarding which controllers are on the motherboard.  This should provide interesting results when it comes to performance.

The VRM power delivery comes with a relatively small blue heatsink next to the socket.   I’ve noticed that Gigabyte tend to have their memory closer to the socket than most other manufacturers, presumably in the name of performance due to shorter interconnects, but the downside is that it can restrict big air coolers.  Nonetheless, it all still conforms to Intel specifications, and there is actually a large gap to the south of the socket.

In terms of fan headers, there are only two within reach of the socket.  We have a 4-pin CPU header at the top near the memory slots, and another near the power/reset/ClearCMOS buttons at the top right of the board.  The other three headers on board are found at the bottom – one 4-pin beside the SATA ports, one 4-pin next to the USB headers and another 4-pin beside the TPM.

Along the right hand side of the motherboard, Gigabyte has given us a different style of power/reset/clear CMOS button that I have seen before.  The power button is big and red, whereas the other two are relatively small.  These will be of use to reviewers and overclockers, however having the ClearCMOS the same size and shape as the reset button may lead to several bad fumbling for the right button followed by several four-letter expletives.

Further down is another style choice – an additional power connector for the PCIe and system, but this case it is a SATA power connector.  I prefer this to the awkward molex connectors we see on other products.  Below this are the standard six SATA ports from the PCH – two SATA 6 Gbps and four SATA 3 Gbps.  Below this is the handy two-digit debug display.

Along the bottom of the board, from left to right, we have the front panel audio, SPDIF header, a 4-pin fan header, the TPM header, three USB 2.0 headers, and another fan header.  At the top of the PCIe is our mSATA connection, useful for mSATA SSDs and boot drives to save case space.  In terms of PCIe, Gigabyte has installed a little nugget of common sense, giving enough space between the first two full-length PCIe for GPUs.  However, in the x1, x16 (x8 in multi-GPU), x1, x1, x8, PCI, x4 setup, only the first two full length PCIe are for graphics output – the final one is a PCIe 2.0 x4 connector.  This would be better served if it were a slightly different color to the other PCIe x16/x8 connectors.  Also with two full length GPUs on board, the user will have access to two PCIe x1 connectors but the PCI connector is blocked.

I know Gigabyte will make a few people jump with joy in relation to the back panel layout – no USB 2.0!  From left to right, we have a PS/2 combination port, two USB 3.0, D-Sub, DVI-D, an Optical SPDIF output, HDMI, DisplayPort, two more USB 3.0, two eSATA, gigabit Ethernet, a final two USB 3.0, and audio outputs.

Board Features

Gigabyte GA-Z77X-UD3H
Price Link
Size ATX
CPU Interface LGA-1155
Chipset Intel Z77
Power Delivery 6 + 4
Memory Slots Four DDR3 DIMM slots supporting up to 32 GB
Up to Dual Channel, 1066-1600 MHz
Video Outputs DisplayPort, HDMI, DVI-D, D-Sub
Onboard LAN Atheros
Onboard Audio Via VT2021
Expansion Slots 2 x PCIe x16 Gen3 (x16, x8/8)
1 x PCIe x16 Gen2 (x4)
3 x PCIe x1 Gen2
1 x PCI
Onboard SATA/RAID 2 x SATA 6 Gbps (PCH), Support for RAID 0, 1, 5, 10
4 x SATA 3 Gbps (PCH)
1 x mSATA connector (shared with SATA2_5)
2 x eSATA 6Gbps (Marvell 9172), RAID 0, 1
USB Six USB 3.0 at rear (2 PCH, 4 VIA VL800)
One USB 3.0 header on board
Three USB 2.0 headers on board
Onboard 4 x SATA 3 Gbps
2 x SATA 6 Gbps
1 x mSATA Connector
5 x Fan Headers
1 x USB 3.0 Header
3 x USB 2.0 Headers
1 x Front Panel Header
1 x Clear CMOS Button
1 x TPM Header
1 x SPDIF Output
1 x SATA Power Connector
Power Connectors 1 x 24-pin ATX connector
1 x 8-pin 12V connector
1 x SATA Power connector
Fan Headers 1 x CPU Fan Header (4-pin)
4 x CHA Fan Headers (4-pin)
IO Panel 1 x Gigabit Ethernet
Audio Outputs
1 x DVI-D
1 x D-Sub
1 x DisplayPort
1 x HDMI
2 x eSATA 6 Gbps
1 x Combo PS/2 Port
6 x USB 3.0
1 x Optical SPDIF Output
Warranty Period 3 Years
Product Page Link

One of the odd choices of Gigabyte is their network and audio controllers.  On nearly every board I have reviewed, we get either a Realtek, an Intel or a Broadcom for the network, and a Realtek or Creative audio solution.  Gigabyte has decided to jump in with an Atheros network controller, and a Via VT2021 audio.  It will be interesting to see if this has an effect on our test capabilities.

ASUS P8Z77-V Pro - In The Box, Overclocking Gigabyte GA-Z77X-UD3H - BIOS and Software
POST A COMMENT

117 Comments

View All Comments

  • bji - Tuesday, May 08, 2012 - link

    Don't intelligently designed modern operating systems use as much unused RAM as is available as filesystem cache? I know Linux does, I would expect Windows 7 does as well. In which case, I have to wonder what the value of a RAM disk except to make your persisted data completely volatile and lost on a power outage.

    Turning the unusable RAM beyond 4 GB into a RAM disk when a 32 bit operating system is in use is the only marginally useful feature that you mentioned, but you have to be stuck with a 32 bit OS for that to be of any value.

    Using a RAM disk comes at the cost of vastly increased complexity for managing persisted files (having to copy things from RAM disk to persistent storage before shutting down) and vastly increased risk of loss of data on unexpected power outage. All of the RAM disk useability features in the world won't help with those issues.
    Reply
  • Zoomer - Tuesday, May 15, 2012 - link

    Temp, cache or scratch files would be good uses of a ramdisk. Other than that, there's really no point. Reply
  • kstan12 - Tuesday, May 08, 2012 - link

    i would *love* to read a review of ivy bridge that doesn't include an engineering sample. my i7-3770k seems to want a lot more voltage @ 4.7 than what i see in reviews online. i know one might clock higher than another but it seems these ES samples use less voltage. am i wrong here?

    and where did you get the updated bios for the asus p8z77-v pro? i can only download 0906. :-)
    Reply
  • IanCutress - Tuesday, May 08, 2012 - link

    Hi Kstan12,

    My ES is stepping 9, which is identical to retail. It's all about the luck of the silicon at the end of the day.

    Ian
    Reply
  • kstan12 - Wednesday, May 09, 2012 - link

    oh ok, so you would just compare the stepping, thanks! maybe i'm not so good at overclocking too.

    love reading your articles...you explain things quite well, good work!
    Reply
  • vegemeister - Thursday, May 10, 2012 - link

    Unless you bought it retail, they could have easily given you a cherry-picked chip. There is a lot of variation in semiconductor manufacturing, even on the same stepping. Reply
  • Zoomer - Tuesday, May 15, 2012 - link

    If that's the results from a cherry picked chip, there would be a very compelling reason to choose SB over IVB for overclockers. Reply
  • JSt0rm01 - Tuesday, May 08, 2012 - link

    But I feel like the release schedule has slowed way way way down. We need amd to step back up to the plate. We need more competition. I have been waiting on the new xeon parts for what seems like forever.

    -------------
    Also, after being a member of the anandtech forums for 10 years I was permanently banned by the moderators there because they wanted to censor a website (ffdt.info) that had conversation that was critical of their moderation. I find that the free flow of all information on the internet is critical. For a tech website such as this to limit the flow of information is offensive the core of these beliefs and its all because certain people in positions of illusory power deem that information detrimental to their positions.
    Reply
  • bji - Tuesday, May 08, 2012 - link

    To your first point, x86 development HAS slowed way down and the trend will continue. With consumer computer usage turning more to cell phones and tablets, the market for faster x86 parts can no longer sustain the billions of dollars of R&D necessary to advance x86 state of the art. Intel is probably in the process of reducing their x86 R&D budgets in anticipation of this.

    This will not change, even if AMD makes a comeback. I have predicted in the past that the fastest x86 part ever to be produced will be no faster than 50% faster than the current fastest Ivy Bridge. I stand by that prediction.

    Sadly, the heady days of rapid advances in x86 tech are over, as anyone who witnessed the early/mid 2000's and can compare them to now will testify to.
    Reply
  • JSt0rm01 - Tuesday, May 08, 2012 - link

    Its unfortunate for power users. I will probably end up with a 2010 6-core mac pro to replace my aging 2006 macpro (please no anti-apple I use certain software and my industry is almost 100% apple I also have been building my own pcs since 1998) but what comes after that? I've already held this macpro for longer then I've had any computer. I guess what comes next? Will arm processors in 15 years be monsters of computational power?

    -------------
    Also, after being a member of the anandtech forums for 10 years I was permanently banned by the moderators there because they wanted to censor a website (ffdt.info) that had conversation that was critical of their moderation. I find that the free flow of all information on the internet is critical. For a tech website such as this to limit the flow of information is offensive the core of these beliefs and its all because certain people in positions of illusory power deem that information detrimental to their positions.
    Reply

Log in

Don't have an account? Sign up now