The GPU

3D rendering is a massively parallel problem. Your GPU ultimately has to determine the color value of each pixel which may not remain constant between frames, at a rate of dozens of times per second. The iPad 2 had 786,432 pixels in its display, and by all available measures its GPU was more than sufficient to drive that resolution. The new iPad has 3.14 million pixels to drive. The iPad 2's GPU would not be sufficient.

When we first heard Apple using the term A5X to refer to the new iPad's SoC, I assumed we were looking at a die shrunk, higher clock version of the A5. As soon as it became evident that Apple remained on Samsung's 45nm LP process, higher clocks were out of the question. The only room for improving performance was to go wider. Thankfully, as 3D rendering is a massively parallel problem, simply adding more GPU execution resources tends to be a great way of dealing with a more complex workload. The iPad 2 shocked the world with its dual-core PowerVR SGX 543MP2 GPU, and the 3rd generation iPad doubled the amount of execution hardware with its quad-core PowerVR SGX 543MP4.

Mobile SoC GPU Comparison
  Adreno 225 PowerVR SGX 540 PowerVR SGX 543MP2 PowerVR SGX 543MP4 Mali-400 MP4 Tegra 2 Tegra 3
SIMD Name - USSE USSE2 USSE2 Core Core Core
# of SIMDs 8 4 8 16 4 + 1 8 12
MADs per SIMD 4 2 4 4 4 / 2 1 1
Total MADs 32 8 32 64 18 8 12
GFLOPS @ 200MHz 12.8 GFLOPS 3.2 GFLOPS 12.8 GFLOPS 25.6 GFLOPS 7.2 GFLOPS 3.2 GFLOPS 4.8 GFLOPS
GFLOPS @ 300MHz 19.2  GFLOPS 4.8 GFLOPS 19.2 GFLOPS 38.4
GFLOPS
10.8 GFLOPS 4.8 GFLOPS 7.2 GFLOPS
GFLOPS As Shipped by Apple/ASUS - - 16 GFLOPS 32 GFLOPS - - 12
GFLOPS

We see this approach all of the time in desktop and notebook GPUs. To allow games to run at higher resolutions, companies like AMD and NVIDIA simply build bigger GPUs. These bigger GPUs have more execution resources and typically more memory bandwidth, which allows them to handle rendering to higher resolution displays.

Apple acted no differently than a GPU company would in this case. When faced with the challenge of rendering to a 3.14MP display, Apple increased compute horsepower and memory bandwidth. What's surprising about Apple's move is that the A5X isn't a $600 desktop GPU, it's a sub 4W mobile SoC. And did I mention that Apple isn't a GPU company?

That's quite possibly the most impressive part of all of this. Apple isn't a GPU company. It's a customer of GPU companies like AMD and NVIDIA, yet Apple has done what even NVIDIA would not do: commit to building an SoC with an insanely powerful GPU.

I whipped up an image to help illustrate. Below is a representation, to-scale, of Apple and NVIDIA SoCs, their die size, and time of first product introduction:

If we look back to NVIDIA's Tegra 2, it wasn't a bad SoC—it was basically identical in size to Apple's A4. The problem was that the Tegra 2 made its debut a full year after Apple's A4 did. The more appropriate comparison would be between the Tegra 2 and the A5, both of which were in products in the first half of 2011. Apple's A5 was nearly 2.5x the size of NVIDIA's Tegra 2. A good hunk of that added die area came from the A5's GPU. Tegra 3 took a step in the right direction but once again, at 80mm^2 the A5 was still over 50% larger.

The A5X obviously dwarfs everything, at around twice the size of NVIDIA's Tegra 3 and 33.6% larger than Apple's A5. With silicon, size isn't everything, but when we're talking about similar architectures on similar manufacturing processes, size does matter. Apple has been consistently outspending NVIDIA when it comes to silicon area, resulting in a raw horsepower advantage, which in turns results in better peak GPU performance.

Apple Builds a Quad-Channel (128-bit) Memory Controller

There's another side effect that you get by having a huge die: room for wide memory interfaces. Silicon layout is a balancing act. You want density to lower costs, but you don't want hotspots so you need heavy compute logic to be spread out. You want wide IO interfaces but you don't want them to be too wide because then you'll cause your die area to balloon as a result. There's only so much room on the perimeter of your SoC to get data out of the chip, hence the close relationship between die size and interface width.

Most mobile SoCs are equipped with either a single or dual-channel LP-DDR2 memory controller. Unlike in the desktop/notebook space where a single DDR2/DDR3 channel refers to a 64-bit wide interface, in the mobile SoC world a single channel is 32-bits wide. Both Qualcomm and NVIDIA use single-channel interfaces, with Snapdragon S4 finally making the jump to dual-channel this year. Apple, Samsung, and TI have used dual-channel LP-DDR2 interfaces instead.

With the A5X Apple did the unthinkable and outfitted the chip with four 32-bit wide LP-DDR2 memory controllers. The confirmation comes from two separate sources. First we have the annotated A5X floorplan courtesy of UBMTechInsights:

You can see the four DDR interfaces around the lower edge of the SoC. Secondly, we have the part numbers of the discrete DRAM devices on the opposite side of the motherboard. Chipworks and iFixit played the DRAM lottery and won samples with both Samsung and Elpida LP-DDR2 devices on-board, respectively. While both Samsung and Elpida do a bad job of updating public part number decoders, both strings match up very closely to 216-ball PoP 2x32-bit PoP DRAM devices. The part numbers don't match up exactly, but they are close enough that I believe we're simply looking at a discrete flavor of those PoP DRAM devices.


K3PE4E400M-XG is the Samsung part number for a 2x32-bit LPDDR2 device, K3PE4E400E-XG is the part used in the iPad. I've made bold the only difference.

A cross reference with JEDEC's LP-DDR2 spec tells us that there is an official spec for a single package, 216-ball dual-channel (2x32-bit) LP-DDR2 device, likely what's used here on the new iPad.


The ball out for a 216-ball, single-package, dual-channel (64-bit) LPDDR2 DRAM

This gives the A5X a 128-bit wide memory interface, double what the closest competition can muster and putting it on par with what we've come to expect from modern x86 CPUs and mainstream GPUs.

The Geekbench memory tests show no improvement in bandwidth, which simply tells us that the interface from the CPU cores to the memory controller hasn't seen a similar increase in width.

Memory Bandwidth Comparison—Geekbench 2
  Apple iPad (3rd gen) ASUS TF Prime Apple iPad 2 Motorola Xyboard 10.1
Overall Memory Score 821 1079 829 1122
Read Sequential 312.0 MB/s 249.0 MB/s 347.1 MB/s 364.1 MB/s
Write Sequential 988.6 MB/s 1.33 GB/s 989.6 MB/s 1.32 GB/s
Stdlib Allocate 1.95 Mallocs/sec 2.25 Mallocs/sec 1.95 Mallocs/sec 2.2 Mallocs/sec
Stdlib Write 2.90 GB/s 1.82 GB/s 2.90 GB/s 1.97 GB/s
Stdlib Copy 554.6 MB/s 1.82 GB/s 564.5 MB/s 1.91 GB/s
Overall Stream Score 331 288 335 318
Stream Copy 456.4 MB/s 386.1 MB/s 466.6 MB/s 504 MB/s
Stream Scale 380.2 MB/s 351.9 MB/s 371.1 MB/s 478.5 MB/s
Stream Add 608.8 MB/s 446.8 MB/s 654.0 MB/s 420.1 MB/s
Stream Triad 457.7 MB/s 463.7 MB/s 437.1 MB/s 402.8 MB/s

Although Apple designed its own memory controller in the A5X, you can see that all of these A9 based SoCs deliver roughly similar memory performance. The numbers we're showing here aren't very good at all. Even though Geekbench has never been good at demonstrating peak memory controller efficiency to begin with, the Stream numbers are very bad. ARM's L2 cache controller is very limiting in the A9, something that should be addressed by the time the A15 rolls around.

Firing up the memory interface is a very costly action from a power standpoint, so it makes sense that Apple would only want to do so when absolutely necessary. Furthermore, notice how the memory interface moved from being closer to the CPU in A4/A5 to being adjacent to the GPU in the A5X. It would appear that only the GPU has access to all four channels.

The A5X SoC A Word on Packaging & Looking Forward
Comments Locked

234 Comments

View All Comments

  • Steelbom - Thursday, March 29, 2012 - link

    I'm curious why we didn't see any graphics benchmarks from the UDK like with the iPhone 4S review?
  • Craig234 - Thursday, March 29, 2012 - link

    Wow, this is good to buy... 'if you are in desperate need for a tablet'?

    That's a pretty weak recommendation, I expected a much stronger endorsement based on the review.
  • Chaki Shante - Friday, March 30, 2012 - link

    Great, thorough review, thanks Anand et al.

    Given the sheer size of the SoC (like 4x larger then Tegra2 or OMAP4430, and 2x Tegra3), you'd bet Apple has the fastest current SoC, at least GPU-wise.

    This SoC is just huge and Apple's margin is certainly lowered. Is this sustainable on the long run ?

    I wonder if any other silicon manufacturer could make same size devices (not technologically but from a price perspective) and expect to sell them.
  • dagamer34 - Friday, March 30, 2012 - link

    No one else needs to crank out so many chips that are the same. Also, other companies will be waiting long enough to use 28nm, so there's little chance they'll be hitting the same size as the A5X on 45nm.
  • Aenean144 - Friday, March 30, 2012 - link

    Since Apple is both the chip designer/licensee and hardware vendor, it saves them the cost of paying a middleman. Ie, Nvidia has to make a profit on a Tegra sale, Apple does not, and can afford a more expensive chip from the fab compared to the business component chain from Asus to Nvidia to GF/TSMC and other IP licensees.

    I bet there is at least 50% margin somewhere in the transaction chain from Asus to Nvidia to GF/TSMC. Apple may also have a sweetheart IP deal from both ARMH and IMGTEC that competitors may not have.
  • shompa - Friday, March 30, 2012 - link

    @Aenean144

    Tegra2 cost 25 dollars for OEMs and 15 dollars to manufacture. A5 cost Apple 25 dollars to manufacture. By designing its own SoC Apple got 30% larger SoC at the same price as Android OEMs.

    Tegra3 is huge. That is a problem for Nvidia. It costs at least 50% more to manufacture. Nvidia is rumored to charge 50 dollar for the SoC.

    A5X is 50%+ larger then Tegra3. Depending of yields it cost Apple 35-50 dollar per SoC.

    The integrated model gives Apple cheaper SoCs, but also custom designed for their needs. Apple have a long history of Accelerating stuff in its OS. Back in 2002 it was AltiVec. Encoding a DVD on a 667mhz powerbook took 90 minutes. The fastest X86 AMD 1.5ghz it took 15 hours. (and it was almost impossible to have XP not bluescreen for 15 hours under full load). Since 2002 Apple accelerate OSX with Quarz Extreme. Both these techniques are now used in iOS with SIMD acceleration and GPU acceleration. Its much more elegant then the brute force X86 approach. Integrated makes it possible to use slower, cheaper and more efficient designs.
  • shompa - Friday, March 30, 2012 - link

    The A5X SoC is a disaster. Its a desperation SoC that had to be implemented when TSMC 28nm process slipped almost 2 years. That is the reason why Apple did not tape out a 32nm A5X on Samsung. PA Semi had to crank out a new tapeout fast with existing assets. So they took the A5 and added 2 more graphics core.

    The real A6 SoC is probably ready since long back, but TSMC cant deliver enough wafers. The rumored tapeout for A6 was mid 2011. Apple got test wafers from TSMC in june and another batch of test wafers in october. Still at this point Apple believed they would use TSMC for Ipad3.

    ARM is about small, cheap and low power SoCs. That is the future of computing. The A5X is larger then many X86 chips. Technically Intel manufactures many of its CPUs cheaper then Apple manufactures the A5X SoC. That is insane.
  • stimudent - Friday, March 30, 2012 - link

    Products reviews are fun to look at, but where there's a bright side, there is always a dark side. Maybe product scoring should also reflect how a manufacturer treats its employees.
  • name99 - Friday, March 30, 2012 - link

    You mean offers them a better wage than they could find in the rest of China, and living conditions substantially superior to anywhere else they could work?
    Yes, by all means let's use that scoring.

    Or perhaps you'd like to continue to live your Mike Daisey dystopia because god-forbid that the world doesn't conform to your expectations?
  • Craig234 - Friday, March 30, 2012 - link

    I'm all for including 'how a company treats its employees' and other social issues; but I'd list them separately, not put them in a product rating.

Log in

Don't have an account? Sign up now