Compression & Encryption Performance

7-Zip Benchmark

By working with a small dataset, the 7-zip benchmark gives us an indication of multithreaded integer performance without being IO limited:

7-zip Benchmark

Although real world compression/decompression tests can be heavily influenced by disk IO, the CPU does play a significant role. Here we're showing a 15% increase in performance over the 2600K. In the real world you'd see something much smaller as workloads aren't always so well threaded. The results here do have implications for other heavily compute bound integer workloads however.

TrueCrypt Benchmark

TrueCrypt is a very popular encryption package that offers full AES-NI support. The application also features a built-in encryption benchmark that we can use to measure CPU performance:

AES-128 Performance - TrueCrypt 7.1 Benchmark

Our TrueCrypt test scales fairly well with clock speed, I suspect what we're seeing here might be due in part to Ivy's ability to maintain higher multi-core turbo frequencies despite having similar max turbo frequencies to Sandy Bridge.

Video Transcoding & Software Development Performance Discrete GPU Gaming Performance
Comments Locked

195 Comments

View All Comments

  • taltamir - Monday, March 12, 2012 - link

    Rarson is correct.
    He isn't suggesting no IGP at all. He is saying put a good IGP on the lower end.

    While there ARE people who need a powerful CPU and will not get a video card because they don't play games, those people do not in any way benefit from having a higher end IGP.

    High end gamers = discreete GPU + Powerful CPU
    Budget gamers = IGP + mid-low range CPU
    Non gamers with money = High end CPU + IGP (underused)
    Non gamers on a budget = Mid-low range CPU + IGP (underused)

    The only people who need a more powerful GPU are the budget gamers and thus it makes sense on the lower end CPUs to have a more powerful IGP.
  • Urillusion17 - Monday, March 12, 2012 - link

    Great article but.... where are the temps??? The few benches I have seen don't mention overclocking, and if they do, they do not mention temps. I am hearing this chip can boil water! I would think that would be as important as anything else...
  • DrWattsOn - Tuesday, March 13, 2012 - link

    +1 (very much in agreement)
  • boogerlad - Wednesday, March 14, 2012 - link

    is it possible to fully load the igp with an opencl application, and not affect the cpu performance at all? From what I've read, it appears the igp shares the cache with the cpu, so will that affect performance?
  • rocker123 - Monday, March 19, 2012 - link

    Generational performance improvements on the CPU side generally fall in the 20 - 40% range. As you've just seen, Ivy Bridge offers a 7 - 15% increase in CPU performance over Sandy Bridge - making it a bonafide tick from a CPU perspective

    Should be :Generational performance improvements on the GPU side generally fall in the 20 - 40% range
  • rocker123 - Monday, March 19, 2012 - link

    Generational performance improvements on the CPU side generally fall in the 20 - 40% range. As you've just seen, Ivy Bridge offers a 7 - 15% increase in CPU performance over Sandy Bridge - making it a bonafide tick from a CPU perspective

    Should be :Generational performance improvements on the GPU side generally fall in the 20 - 40% range
  • tipoo - Monday, March 19, 2012 - link

    They give the drivers their own tweaks and bug fixes, but I doubt they could do something like add T&L without the manufacturers support. In fact, they didn't, unless they have bigger driver teams now.
  • ClagMaster - Wednesday, March 21, 2012 - link

    "Personally, I want more and I suspect that Haswell will deliver much of that. It is worth pointing out that Intel is progressing at a faster rate than the discrete GPU industry at this point. Admittedly the gap is downright huge, but from what I've heard even the significant gains we're seeing here with Ivy will pale in comparison to what Haswell provides."

    Personally, I believe on-board graphics will never be on par with a dedicated graphics part. And it is obcessive-compulsive ridiculous to compare the performance of the HD4000 with discrete graphics and complain its not as good.

    The HD4000 is meant for providing graphics for business and multi-media computers. And for that purpose it is outstanding.

    If you want gaming or engineering workstation performance, get a discrete graphics card. And stop angsting about how bad onboard graphics is to discrete graphics.
  • pottermd - Thursday, March 22, 2012 - link

    Today's desktop processors are more than fast enough to do professional level 3D rendering at home.

    The article contained this statement. It's not really true. I've had a long nap and the render I'm doing is still running. :)
  • Dracusis - Friday, April 6, 2012 - link

    "The people who need integrated graphics"

    No one *needs* integrated graphics. But not everyone needs discrete graphics. The higher performance an IGP has, the less people overall will *need* DGPs.

    Not all games need dedicated graphics cards, just the multi million dollar re-hashed COD's that choke retail stores. There are literally thousands of other games around that only require a small amount of graphics processing power. Flash now has 3D accelerated content and almost every developer using it will target IGP performance levels. Almost all casual game developers target IGPs as well, they're not selling to COD players. Sure, most of those games won't need a hight end CPU as well, but people don't buy computers to play casual games, they buy them for a massive range of tasks, the vast majority of which will be CPU bound so faster would be better.

    Also, as an indie game developer I hit performance walls with CPUs more often than I do with GPUs. You can always scale back geometry/triangle counts, trim or cut certain visual effects but cutting back on CPU related overheads generally means you're cutting out gameplay.

Log in

Don't have an account? Sign up now