Measuring Real-World Power Consumption, Part Two

First, we wanted to check if the Interlagos power management problems were specific to ESXi. Therefore, we measured the power consumption when running Windows 2008 R2 SP1 x64. We set the power management policy to "Balanced" and "High Performance".

Windows Server 2008 R2 Idle Power consumption

Wow, that is a lot better! The core gating of the Bulldozer cores is first rate, as good as the Xeons of today. Idle power draw is a serious problem of the Opteron 6174: it is between 30 to 63% higher! So even if the ESX scheduler does not really understand how to handle the power management features of the "Bulldozer" Opteron, the question remains why the Opteron 6276 cannot even beat the Opteron 6174 when running idle in ESXi.

ESX 5.0

While I was testing the power consumption on Windows, my colleague Tijl Deneut dug up some interesting information about the ESX power manager. The Balanced Power policy (the default power policy for ESXi 5) is rather simple: it uses an algorithm that exploits only the processor’s P-states and C-state C0 and C1. So "Balanced" does not make very good use of the deeper sleep states. So we went for custom, which is the same as "Balanced" until you start to customize of course. We enabled the other C-states and things started to make sense.

ESX 5.0

After some tinkering, the Opteron 6276 does quite a bit better and saves 17W (10%). The Xeon reduces power consumption by 3W, and the Opteron 6174's less advanced power management is not able to save any more power. So enabling the C-states is an important way to improve the power consumption of the Opteron "Interlagos" with ESXi 5.

Virtualization Performance: ESX + Windows Power Management in Windows Server 2008 SP2
Comments Locked

106 Comments

View All Comments

  • mino - Wednesday, November 16, 2011 - link

    More workload ... also you need at least 3 servers for any meaningful redundancy ... even when only needing the power of 1/4 of iether of them.

    BTW. most cpu's sold in the SMB space are far cry from the 16-core monsters reviewed here ...
  • JohanAnandtech - Thursday, November 17, 2011 - link

    Don't forget the big "Cloud" buyers. Facebook has increased the numbers of server from 10.000 somewhere in 2008 tot 10 times more in 2011. That is one of the reasons why the number of units is still growing.
  • roberto.tomas - Wednesday, November 16, 2011 - link

    seems like the front page write and this article are from different versions:

    from the write up: "Each of the 16 integer threads gets their own integer cluster, complete with integer executions units, a load/store unit, and an L1-data cache"

    from the article: "Cores (Modules)/Threads 8/16 [...] L1 Data 8x 64 KB 2-way"

    what is really surprising is calling them threads (I thought, like the write up on the front page, that they each had their own independent integer "unit"). If they have their own L1 cache, they are cores as far as I'm concerned. Then again, the article itself seems to suggest just that: they are threads without independent L1 cache.

    ps> I post comments only like once a year -- please dont delete my account. every time I do, I have to register anew :D
  • mino - Wednesday, November 16, 2011 - link

    I suits Intel better to call them threads ... so writers are ordered ... only if the pesky reality did not pop up here and there.

    BD 4200 series is an 1-chip, 4-module, 8(4*2)-core, 16(4*2)-thread processor
    BD 6200 series is a 2-chip, 8(2*4)-module, 16(2*4*2)-core, 16(2*4*2)-thread processor

    Xeon 5600 series is an (up to) 1-chip, 6-core, 12(6*2)-thread processor.

    Simple as cake. :D
  • rendroid1 - Wednesday, November 16, 2011 - link

    The L1 D-cache should be 1 per thread, 4-way, etc.

    The L1 I-cache is shared by 2 threads per "module", and is 2-way, etc.
  • JohanAnandtech - Thursday, November 17, 2011 - link

    Yep. fixed. :-)
  • Novality77 - Wednesday, November 16, 2011 - link

    One thing that I never see in any reviews is remarks about the fact that more cores with lower IPC has added costs when it comes to licensing. For instance Oracle, IBM and most other suppliers charge per core. These costs can add up pretty fast. 10000 per core is not uncommon.....
  • fumigator - Wednesday, November 16, 2011 - link

    Great review as usual. I found all the new AMD opterons very interesting. Pairing two in a dual socket G34 would make a multitasking monster on the cheap, and quite future proof.

    Abour cores vs modules vs hyperthreading, people thinking AMD cores aren't true cores, should consider the following:

    adding virtual cores on hyperthreading in intel platforms don't make performance increase 100% per core, but only less than 50%

    Also if you look at intel processor photographs, you won't notice the virtual cores anywhere in the pictures.
    While in interlagos/bulldozer you could clearly spot each core by its shape inside each module. What surprises me is how small they are, but that's for an entire different discussion.
  • MossySF - Wednesday, November 16, 2011 - link

    I'm waiting to see the follow-up Linux article. The hints in this one confirm my own experiences. At our company, we're 99% FOSS and when using Centos packages, AMD chips run just as fast as Intel chips since it's all compiled with GCC instead of Intel's "disable faster code when running on AMD processors" compiler. As an example, PostgreSQL on native Centos is just as fast on Thuban compared to Sandy Bridge at the same GHz. And when you then virtualize Centos under Centos+KVM, Thuban is 35% faster. (Nehalem goes from 10% slower natively to 50% slower under KVM!)

    The compiler issue might be something to look at in virtualization tests. If you fake an Intel identifier in your VM, optimizations for new instruction sets might kick in.

    http://www.agner.org/optimize/blog/read.php?i=49#1...
  • UberApfel - Wednesday, November 16, 2011 - link

    Amazingly biased review from Anandtech.

    A fairer comparison would be between the Opteron 6272 ($539 / 8-module) and Xeon E5645 ($579 / 6-core); both common and recent processors.

    Yet handpicking the higher clocked Opteron 6276 (for what good reason?) seems to be nothing but an aim to make the new 6200 series seem un-remarkable in both power consumption and performance. The 6272 is cheaper, more common, and would beat the Xeon X5670 in power consumption which half this review is weighted on. Otherwise you should've used the 6282 SE which would compete in performance as well as being the appropriate processor according to your own chart.

    Even the chart on Page 1 is designed to make Intel look superior all-around. For what reason would you exclude the Opteron 4274 HE (65W TDP) or the Opteron 4256 EE (35W TDP) from the 'Power Optimized' section?

    The ignorance on processor tiers is forgivable even if you're likely paid to write this... but the benchmarks themselves are completely irrelevant. Where's the IIS/Apache/Nginx benchmark? PostgreSQL/SQLite? Facebook's HipHop? Node.js? Java? Something relevant to servers and not something obscure enough to sound professional?

Log in

Don't have an account? Sign up now