Rendering Performance: 3DSMax 2012

As requested, we're reintroducing our 3DS Max benchmark. We used the "architecture" scene which is included in the SPEC APC 3DS Max test. As the Scanline renderer is limited to 16 threads, we chose the iray render engine, which is basically an automatically configuring Mental Ray render engine. Note that these numbers are in no way comparable to the ones we have obtained before as those were all performed with the scanline render engine!

We rendered at 720p (1280x720) resolution. We measured the time it takes to render 10 frames (from 20 to 29) with SSE enabled. We recorded the time and then calculated (3600 seconds * 10 frames / time recorded) how many frames a certain CPU configuration could render in one hour. All results are reported as rendered images per hour; higher is thus better. We used the 64-bit version of 3ds Max 2008 on 64-bit Windows 2008 R2 SP1.

3DSMax  2012 Architecture

Something really weird happened here: once we disable CMT, the Opteron 6276 performs much better. Rendering performance is quite good as the Opteron 6276 beats the Xeon X5650.

Rendering Performance: Cinebench Rendering Performance: Maxwell Render and Blender
Comments Locked

106 Comments

View All Comments

  • JohanAnandtech - Thursday, November 17, 2011 - link


    1) Niagara is NOT a CMT. It is interleaved multipthreading with SMT on top.

    I haven't studied the latest Niagaras but the T1 was a fine grained mult-threaded CPU. It switched like a gatling gun between threads, and could not execute two threads at the same time.
  • Penti - Thursday, November 17, 2011 - link

    SPARC T2 and onwards has additional ALU/AGU resources for a half physical two thread (four logically) solution per core with shared scheduler/pipeline if I remember correctly. That's not when CMT entered the picture according to SUN and Sun engineers any way. They regard the T1 as CMT as it's chip level. It's not just a CMP-chip any how. SMT is just running multiple threads on the cpus, CMP is working the same as SMP on separate sockets. It is not the same as AMDs solution however.
  • Phylyp - Tuesday, November 15, 2011 - link

    Firstly, this was a very good article, with a lot of information, especially the bits about the differences between server and desktop workloads.

    Secondly, it does seem that you need to tune either the software (power management settings) or the chip (CMT) to get the best results from the processor. So, what advise is AMD offering its customers in terms of this tuning? I wouldn't want to pony up hundreds of dollars to have to then search the web for little titbits like switching off CMT in certain cases, or enabling High-performance power management.

    Thirdly, why is the BIOS reporting 32 MB of L2 cache instead of 8 MB?
  • mino - Wednesday, November 16, 2011 - link

    No need for tuning - turbo is OS-independent (unless OS power management explicitly disables it aka Windows).
    Just disable the power management on the OS level (= high performance fro Windows) and you are good to go.
  • JohanAnandtech - Thursday, November 17, 2011 - link

    The BIOS is simply wrong. It should have read 16 MB (2 orochi dies of 8 MB L3)
  • gamoniac - Tuesday, November 15, 2011 - link

    Thanks, Johan. I run HyperV on Windows Server 2008 R2 SP1 on Phonem II X6 (my workstation) and have noticed the same CPU issue. I previously fixed it by disabling AMD's Cool'n'Quiet BIOS setting. After switching to high performance increase my overall power usage by 9 watts but corrected the CPU capping issue you mentioned.

    Yet another excellent article from AnandTech. Well done. This is how I don't mind spending 1 hour of my precious evening time.
  • mczak - Tuesday, November 15, 2011 - link

    L1 data and instruction cache are swapped (instruction is 8x64kB 2-way data is 16x16kB 4-way)
    L2 is 8x2MB 16-way
  • JohanAnandtech - Thursday, November 17, 2011 - link

    fixed. My apologies.
  • hechacker1 - Tuesday, November 15, 2011 - link

    Curious if those syscalls for virtualization were improved at all. I remember Intel touting they improved the latency each generation.

    http://www.anandtech.com/show/2480/9

    I'm guessing it's worse considering the increased general cache latency? I'm not sure how the latency, or syscall, is related if at all.

    Just curious as when I do lots of compiling in a guest VM (Gentoo doing lots of checking of packages and hardware capabilities each compile) it tends to spend the majority of time in the kernel context.
  • hechacker1 - Tuesday, November 15, 2011 - link

    Just also wanted to add: Before I had a VT-x enabled chip, it was unbearably slow to compile software in a guest VM. I remember measuring latencies of seconds for some operations.

    After getting an i7 920 with VT-x, it considerably improved, and most operations are in the hundred or so millisecond range (measured with latencytop).

    I'm not sure how the latests chips fare.

Log in

Don't have an account? Sign up now