Application & Game Launch Performance: Virtually Indistinguishable from an SSD

We'll get to our standard benchmark suite in a second, but with a technology like SRT we need more to truly understand how it's going to behave in all circumstances. Let's start with something simple: application launch time.

I set up a Z68 system with a 3TB Seagate Barracuda 7200RPM HDD and Intel's 20GB SSD 311. I timed how long it took to launch various applications both with and without the SSD cache enabled. Note that the first launch of anything with SSD caching enabled doesn't run any faster; it's the second, third, etc... times that you launch an application that the SSD cache will come into effect. I ran every application once, rebooted the system, then timed how long it took to launch both in the HDD and caching configurations:

Application Launch Comparison
Intel SSD 311 20GB Cache Adobe Photoshop CS5.5 Adobe After Effects CS5.5 Adobe Dreamweaver CS5.5 Adobe Illustrator CS5.5 Adobe Premier Pro CS5.5
Seagate Barracuda 3TB (No cache) 7.1 seconds 19.3 seconds 8.0 seconds 6.1 seconds 10.4 seconds
Seagate Barracuda 3TB (Enhanced Cache) 5.0 seconds 11.3 seconds 5.5 seconds 3.9 seconds 4.7 seconds
Seagate Barracuda 3TB (Maximize Cache) 3.8 seconds 10.6 seconds 5.2 seconds 4.2 seconds 3.8 seconds

These are pretty big improvements! Boot time and multitasking immediately after boot also benefit tremendously:

Boot & Multitasking After Boot Comparison
  Boot Time (POST to Desktop) Launch Adobe Premier + Chrome + WoW Immediately After Boot
Seagate Barracuda 3TB (No cache) 55.5 seconds 37.0 seconds
Seagate Barracuda 3TB (Enhanced Cache) 35.8 seconds 12.3 seconds
Seagate Barracuda 3TB (Maximize Cache) 32.6 seconds 12.6 seconds

Let's look at the impact on gaming performance, this time we'll also toss in a high end standalone SSD:

Game Load Comparison
Intel SSD 311 20GB Cache Portal 2 (Game Launch) Portal 2 (Level Load) StarCraft 2 (Game Launch) StarCraft 2 (Level Load) World of Warcraft (Game Launch) World of Warcraft (Level Load)
Seagate Barracuda 3TB (No cache) 12.0 seconds 17.1 seconds 15.3 seconds 23.3 seconds 5.3 seconds 11.9 seconds
Seagate Barracuda 3TB (Enhanced Cache) 10.3 seconds 15.0 seconds 10.3 seconds 15.1 seconds 5.2 seconds 5.6 seconds
Seagate Barracuda 3TB (Maximize Cache) 9.9 seconds 15.1 seconds 9.7 seconds 15.0 seconds 4.5 seconds 5.8 seconds
OCZ Vertex 3 240GB (6Gbps) 8.5 seconds 13.1 seconds 7.5 seconds 14.5 seconds 4.1 seconds 4.7 seconds

While the Vertex 3 is still a bit faster, you can't argue that Intel's SRT doesn't deliver most of the SSD experience at a fraction of the cost—at least when it comes to individual application performance.

Game Loading Performance

Look at what happens when we reboot and run the application launch tests a third time:

Game Load Comparison
Intel SSD 311 20GB Cache Portal 2 (Game Launch) Portal 2 (Level Load) StarCraft 2 (Game Launch) StarCraft 2 (Level Load) World of Warcraft (Game Launch) World of Warcraft (Level Load)
Seagate Barracuda 3TB (No cache) 12.0 seconds 17.1 seconds 15.3 seconds 23.3 seconds 5.3 seconds 11.9 seconds
Seagate Barracuda 3TB (Enhanced Cache) 10.3 seconds 15.0 seconds 10.3 seconds 15.1 seconds 5.2 seconds 5.6 seconds
Seagate Barracuda 3TB (Maximize Cache) 9.9 seconds 15.1 seconds 9.7 seconds 15.0 seconds 4.5 seconds 5.8 seconds
Seagate Barracuda 3TB (Maximize Cache)—Run 3 9.9 seconds 14.8 seconds 8.1 seconds 14.9 seconds 4.4 seconds 4.3 seconds
OCZ Vertex 3 240GB (6Gbps) 8.5 seconds 13.1 seconds 7.5 seconds 14.5 seconds 4.1 seconds 4.7 seconds

Performance keeps going up. The maximized SRT system is now virtually indistinguishable from the standalone SSD system.

Gaming is actually a pretty big reason to consider using Intel SRT since games can eat up a lot of storage space. Personally I keep one or two frequently used titles on my SSD, everything else goes on the HDD array. As the numbers above show however, there's a definite performance benefit to deploying a SSD cache in a gaming environment.

I was curious how high of a hit rate I'd see within a game loading multiple levels rather than just the same level over and over again. I worried that Intel's SRT would only cache the most frequently used level and not improve performance across the board. I was wrong.

StarCraft 2 Level Loading—Seagate Barracuda 3TB (Maximize Cache)
Levels Loaded in Order Load Time
Agria Valley 16.1 seconds
Blistering Sands 4.5 seconds
Nightmare 4.8 seconds
Tempest 6.3 seconds
Zenith 6.2 seconds

Remember that SRT works by caching frequently accessed LBAs, many of which may be reused even across different levels. In the case of StarCraft 2, only the first multiplayer level load took a long time as its assets and other game files were cached. All subsequent level loads completed much quicker. Note that this isn't exclusive to SSD caching as you can benefit from some of this data being resident in memory as well.

Intel's SSD 311 20GB: Designed to Cache The Downside: Consistency
POST A COMMENT

106 Comments

View All Comments

  • µBits - Monday, July 11, 2011 - link

    http://download.intel.com/support/motherboards/des...

    System Requirements:
    For a system to support Intel Smart Response Technology it must have the following:
    • Intel® Z68 Express Chipset-based desktop board
    • Intel® Core™ Processor in the LGA 1155 package
    • System BIOS with SATA mode set to RAID
    • Intel Rapid Storage Technology software 10.5 version release or later
    • Single Hard Disk Drive (HDD) or multiple HDD’s in a single RAID volume
    • Solid State Drive (SSD) with a minimum capacity of 18.6GB
    • Operating system: Microsoft Windows Vista 32-bit Edition and 64-bit Edition, Microsoft Windows 7 32-bit Edition and 64-bit
    Reply
  • codedivine - Wednesday, May 11, 2011 - link

    I am interested in using Linux and I am wondering about various things:
    1. Will it work under Linux? Can I configure it from Linux?
    2. Is it file system dependant? I guess it is not.
    3. Whether it will work on multi-OS machines. For example, what happens if I dual boot Windows and Linux?

    Unrelated to Linux is, does this scheme get confused by say using lots of VMs?
    Reply
  • Penti - Wednesday, May 11, 2011 - link

    No, so called fake raid (software raid) that the chipset/drivers supports do never work in Linux. RST do not work under other OS's then Windows. Mac and Linux will have to use the built in software raid rather then the none existing driversbased one. And will lack all support for SSD caching.

    VMs usually write to a virtual hard drive (file) that saves the data to the disk. That should be absolutely fine.
    Reply
  • Mulberry - Saturday, May 21, 2011 - link

    but to the question on dual booting:

    Can you dual boot eg. Win XP and Win 7?
    Reply
  • headhunter00 - Sunday, August 07, 2011 - link

    well, you can always set the root partition on the ssd, by creating custom partitions during installation, and set the resource hogging partitions such as /var and /home on your hdd. this way, all the binaries and libraries load from the hdd. if you don't have enough space on your hdd to do that either, then you are out of luck. thats the closest you can get to ssd caching in linux. ofcourse there is a patch for the kernel to do ssd caching natively, but its pretty outdated and probably not compatible with your hardware. to do ssd-caching in windows with linux, you have to preserve some space on ssd to do so. Reply
  • MonkeyPaw - Wednesday, May 11, 2011 - link

    The virtue interface is awful. Looks like the ugly tree fell on that android girl. Reply
  • sunbear - Wednesday, May 11, 2011 - link

    Consumer nases (readynas, qnap, etc) could really benefit from this. Flashcache (http://planet.admon.org/flashcache-caching-data-in... released by facebook also looks interesting. Reply
  • fitten - Wednesday, May 11, 2011 - link

    Can you have an SSD as your boot drive, then a large HDD (typical configuration... OS/apps on SSD, data/etc on HDD) and then have yet-another SSD enabled with SRT for caching the HDD? Seems like the best of both worlds (other than cost). Reply
  • swhitton - Wednesday, May 11, 2011 - link

    I reckon that setup would almost certainly work fine.

    What I'm wondering is whether you could use a single SSD partitioned so that part of it was a boot drive and the other part was a cache for a HDD. Such a setup would solve the problem of the 120gb SSD not being quite the right size for any particular purpose.

    A 60-80gb partition with Windows and apps on it and the remaining space used as a cache. This would avoid the problem of having to symbolic link Steam games and so forth, while also not requiring you to buy two SSDs in order to have a boot drive and a cache drive.

    Anand did mention that a cache drive could be partitioned so that only part of it needed to be used as a cache. Just not sure if there would be any issues that might arise with using the remaining partition as a boot drive.

    Thoughts anyone?
    Reply
  • y2kBug - Wednesday, May 11, 2011 - link

    Here is a quote from vr-zone.com’s review (http://vr-zone.com/articles/first-look-msi-z68a-gd... ) on SRT: “All existing partitions on the SSD must be deleted before it can be used as a cache”. This makes me believe that using oneSSD for dual purposes (boot drive and SRT at the same time) is not possible. I really want to hear Anand’s last word on this. Reply

Log in

Don't have an account? Sign up now