Application & Game Launch Performance: Virtually Indistinguishable from an SSD

We'll get to our standard benchmark suite in a second, but with a technology like SRT we need more to truly understand how it's going to behave in all circumstances. Let's start with something simple: application launch time.

I set up a Z68 system with a 3TB Seagate Barracuda 7200RPM HDD and Intel's 20GB SSD 311. I timed how long it took to launch various applications both with and without the SSD cache enabled. Note that the first launch of anything with SSD caching enabled doesn't run any faster; it's the second, third, etc... times that you launch an application that the SSD cache will come into effect. I ran every application once, rebooted the system, then timed how long it took to launch both in the HDD and caching configurations:

Application Launch Comparison
Intel SSD 311 20GB Cache Adobe Photoshop CS5.5 Adobe After Effects CS5.5 Adobe Dreamweaver CS5.5 Adobe Illustrator CS5.5 Adobe Premier Pro CS5.5
Seagate Barracuda 3TB (No cache) 7.1 seconds 19.3 seconds 8.0 seconds 6.1 seconds 10.4 seconds
Seagate Barracuda 3TB (Enhanced Cache) 5.0 seconds 11.3 seconds 5.5 seconds 3.9 seconds 4.7 seconds
Seagate Barracuda 3TB (Maximize Cache) 3.8 seconds 10.6 seconds 5.2 seconds 4.2 seconds 3.8 seconds

These are pretty big improvements! Boot time and multitasking immediately after boot also benefit tremendously:

Boot & Multitasking After Boot Comparison
  Boot Time (POST to Desktop) Launch Adobe Premier + Chrome + WoW Immediately After Boot
Seagate Barracuda 3TB (No cache) 55.5 seconds 37.0 seconds
Seagate Barracuda 3TB (Enhanced Cache) 35.8 seconds 12.3 seconds
Seagate Barracuda 3TB (Maximize Cache) 32.6 seconds 12.6 seconds

Let's look at the impact on gaming performance, this time we'll also toss in a high end standalone SSD:

Game Load Comparison
Intel SSD 311 20GB Cache Portal 2 (Game Launch) Portal 2 (Level Load) StarCraft 2 (Game Launch) StarCraft 2 (Level Load) World of Warcraft (Game Launch) World of Warcraft (Level Load)
Seagate Barracuda 3TB (No cache) 12.0 seconds 17.1 seconds 15.3 seconds 23.3 seconds 5.3 seconds 11.9 seconds
Seagate Barracuda 3TB (Enhanced Cache) 10.3 seconds 15.0 seconds 10.3 seconds 15.1 seconds 5.2 seconds 5.6 seconds
Seagate Barracuda 3TB (Maximize Cache) 9.9 seconds 15.1 seconds 9.7 seconds 15.0 seconds 4.5 seconds 5.8 seconds
OCZ Vertex 3 240GB (6Gbps) 8.5 seconds 13.1 seconds 7.5 seconds 14.5 seconds 4.1 seconds 4.7 seconds

While the Vertex 3 is still a bit faster, you can't argue that Intel's SRT doesn't deliver most of the SSD experience at a fraction of the cost—at least when it comes to individual application performance.

Game Loading Performance

Look at what happens when we reboot and run the application launch tests a third time:

Game Load Comparison
Intel SSD 311 20GB Cache Portal 2 (Game Launch) Portal 2 (Level Load) StarCraft 2 (Game Launch) StarCraft 2 (Level Load) World of Warcraft (Game Launch) World of Warcraft (Level Load)
Seagate Barracuda 3TB (No cache) 12.0 seconds 17.1 seconds 15.3 seconds 23.3 seconds 5.3 seconds 11.9 seconds
Seagate Barracuda 3TB (Enhanced Cache) 10.3 seconds 15.0 seconds 10.3 seconds 15.1 seconds 5.2 seconds 5.6 seconds
Seagate Barracuda 3TB (Maximize Cache) 9.9 seconds 15.1 seconds 9.7 seconds 15.0 seconds 4.5 seconds 5.8 seconds
Seagate Barracuda 3TB (Maximize Cache)—Run 3 9.9 seconds 14.8 seconds 8.1 seconds 14.9 seconds 4.4 seconds 4.3 seconds
OCZ Vertex 3 240GB (6Gbps) 8.5 seconds 13.1 seconds 7.5 seconds 14.5 seconds 4.1 seconds 4.7 seconds

Performance keeps going up. The maximized SRT system is now virtually indistinguishable from the standalone SSD system.

Gaming is actually a pretty big reason to consider using Intel SRT since games can eat up a lot of storage space. Personally I keep one or two frequently used titles on my SSD, everything else goes on the HDD array. As the numbers above show however, there's a definite performance benefit to deploying a SSD cache in a gaming environment.

I was curious how high of a hit rate I'd see within a game loading multiple levels rather than just the same level over and over again. I worried that Intel's SRT would only cache the most frequently used level and not improve performance across the board. I was wrong.

StarCraft 2 Level Loading—Seagate Barracuda 3TB (Maximize Cache)
Levels Loaded in Order Load Time
Agria Valley 16.1 seconds
Blistering Sands 4.5 seconds
Nightmare 4.8 seconds
Tempest 6.3 seconds
Zenith 6.2 seconds

Remember that SRT works by caching frequently accessed LBAs, many of which may be reused even across different levels. In the case of StarCraft 2, only the first multiplayer level load took a long time as its assets and other game files were cached. All subsequent level loads completed much quicker. Note that this isn't exclusive to SSD caching as you can benefit from some of this data being resident in memory as well.

Intel's SSD 311 20GB: Designed to Cache The Downside: Consistency
Comments Locked

106 Comments

View All Comments

  • quang777 - Monday, August 8, 2011 - link

    Does it work with older SSDs that don't support TRIM? Will SRT "cleanup" like TRIM to keep the cache "clean"?
  • cbuck - Thursday, September 22, 2011 - link

    For those working w/in the X58 chipset world and who have access to the Marvell 9128 "Hyperduo" SATA III (6GB) chip supported motherboards, what have people seen in terms of stability and speed?

    Understandably, the X58 chipset is a quickly fading market, but I happened to have a spare i7 920 D0 lying around and picked up a recently released LGA 1366 motherboard to put that CPU to use....
  • Tastare - Monday, October 31, 2011 - link

    I'm looking for a functionality/application acting like:
    1. Smart responce technology (problem: cannot be used when OS is installed on SSD) or
    2. Readyboost, but without deleting the cache during reboot.

    I want a program/function working like a read and write cache(*) for a the 7200rpm drive (using e.g. 10-30GB of the SSD disk or USB for cache) that "survives" OS restart. Do anyone know if there exist any application with this functionality (Solutions I know: 1. buy a second SSD to use for HD cache, and 2. I could install OS on the 7200 rpm drive and use part of the SSD as cache)?

    (*) With cache I mean something like:
    - mirror the latest filecs read from the HD, and
    - writes data directly to the USB, and later mirror the data to the Hard drive (when it has started up from idle to 7200rpm.)

    Background: My system: Windows 7, Z68 motherboard, 120GB SSD + 1GB disk 7200rpm. The slower disk goes into standby (which is fine because I doesn't use it so often), but when data is needed it starts up slowly which is annoying.
  • bell2366 - Tuesday, February 28, 2012 - link

    I'm suprised the HD manufacturers have not started fighting back and providing hybrid SSD/HDD's with write through cache etc, 1TB hard disk with 64GB SSD on board would rock.
    Especially if they take the supercapacitor route for guarenteed writes to SSD NAND on power failures.
    I've recently bought one of the new Comay Venus 120GB SSD's and it has these features, not to mention performance that blows OCZ out of the water. Just wish I didn't have to mess around thinking what to keep on SSD and what to keep on HDD, a hybrid would be simplicity itself.
  • astrojny - Friday, May 4, 2012 - link

    Any thought on using Intel's Smart Technology with the 1TB Western Digital Raptor that was just released?
  • btkcsd - Saturday, December 13, 2014 - link

    Do you know if SRT will work with all processors that are otherwise compatible with the Z68 chipset? I've seen some reports that only true "core" processors are supported, like the i3/i5/i7 while Sandy Bridge based Celerons and Pentiums are not.

Log in

Don't have an account? Sign up now