The NAND Matrix

It's not common for SSD manufacturers to give you a full list of all of the different NAND configurations they ship. Regardless how much we appreciate transparency, it's rarely offered in this industry. Manufacturers love to package all information into nice marketable nuggets and the truth doesn't always have the right PR tone to it. Despite what I just said, below is a table of every NAND device OCZ ships in its Vertex 2 and Vertex 3 products:

OCZ Vertex 2 & Vertex 3 NAND Usage
  Process Node Capacities
Intel L63B 34nm Up to 240GB
Micron L63B 34nm Up to 480GB
Spectek L63B 34nm 240GB to 360GB
Hynix 32nm Up to 120GB
Micron L73A 25nm Up to 120GB
Micron L74A 25nm 160GB to 480GB
Intel L74A 25nm 160GB to 480GB

The data came from OCZ and I didn't have to sneak around to get it, it was given to me by Alex Mei, Executive Vice President of OCZ.

You've seen the end result, now let me explain how we got here.

OCZ accidentally sent me a 120GB Vertex 2 built with 32nm Hynix NAND. I say it was an accident because the drive was supposed to be one of the new 25nm Vertex 2s, but there was a screwup in ordering and I ended up with this one. Here's a shot of its internals:

You'll see that there are a ton of NAND devices on the board. Thirty two to be exact. That's four per channel. Do the math and you'll see we've got 32 x 4GB 32nm MLC NAND die on the PCB. This drive has the same number of NAND die per package as the new 25nm 120GB Vertex 2 so in theory performance should be the same. It isn't however:

Vertex 2 NAND Performance Comparison
  AT Storage Bench Heavy 2011 AT Storage Bench Light 2011
34nm IMFT 120.1 MB/s 155.9 MB/s
25nm IMFT 110.9 MB/s 145.8 MB/s
32nm Hynix 92.1 MB/s 125.6 MB/s

Performance is measurably worse. You'll notice that I also threw in some 34nm IMFT numbers to show just how far performance has fallen since the old launch NAND.

Why not just keep using 34nm IMFT NAND? Ultimately that product won't be available. It's like asking for 90nm CPUs today, the whole point to Moore's Law is to transition to smaller manufacturing processes as quickly as possible.

Why is the Hynix 32nm NAND so much slower? That part is a little less clear to me. For starters we're only dealing with one die per package, we've established can have a negative performance impact. On top of that, SandForce's firmware may only be optimized for a couple of NAND devices. OCZ admitted that around 90% of all Vertex 2 shipments use Intel or Micron NAND and as a result SandForce's firmware optimization focus is likely targeted at those NAND types first and foremost. There are differences in NAND interfaces as well as signaling speeds which could contribute to performance differences unless a controller takes these things into account.


25nm Micron NAND

The 25nm NAND is slower than the 34nm offerings for a number of reasons. For starters page size increased from 4KB to 8KB with the transition to 25nm. Intel used this transition as a way to extract more performance out of the SSD 320, however that may have actually impeded SF-1200 performance as the firmware architecture wasn't designed around 8KB page sizes. I suspect SandForce just focused on compatibility here and not performance.

Secondly, 25nm NAND is physically slower than 34nm NAND:

NAND Performance Comparison
  Intel 34nm NAND Intel 25nm NAND
Read 50 µs 50 µs
Program 900 µs 1200 µs
Block Erase 2 µs 3 µs

Program and erase latency are both higher, although admittedly you're working with much larger page sizes (it's unclear whether Intel's 1200 µs figure is for a full page program or a partial program).

The bad news is that eventually all of the 34nm IMFT drives will dry up. The worse news is that the 25nm IMFT drives, even with the same number of NAND devices on board, are lower in performance. And the worst news is that the drives that use 32nm Hynix NAND are the slowest of them all.

I have to mention here that this issue isn't exclusive to OCZ. All other SF drive manufacturers are faced with the same potential problem as they too must shop around for NAND and can't guarantee that they will always ship the same NAND in every single drive.

The Problem With Ratings

You'll notice that although the three NAND types I've tested perform differently in our Heavy 2011 workload, a quick run through Iometer reveals that they perform identically:

Vertex 2 NAND Performance Comparison
  AT Storage Bench Heavy 2011 Iometer 128KB Sequential Write
34nm IMFT 120.1 MB/s 214.8 MB/s
25nm IMFT 110.9 MB/s 221.8 MB/s
32nm Hynix 92.1 MB/s 221.3 MB/s

SandForce's architecture works by reducing the amount of data that actually has to be written to the NAND. When writing highly compressible data, not all NAND devices are active and we're not bound by the performance of the NAND itself since most of it is actually idle. SandForce is able to hide even significant performance differences between NAND implementations. This is likely why SandForce is more focused on NAND compatibility than performance across devices from all vendors.

Let's see what happens if we write incompressible data to these three drives however:

Vertex 2 NAND Performance Comparison
  Iometer 128KB Sequential Write (Incompressible Data) Iometer 128KB Sequential Write
34nm IMFT 136.6 MB/s 214.8 MB/s
25nm IMFT 118.5 MB/s 221.8 MB/s
32nm Hynix 95.8 MB/s 221.3 MB/s

It's only when you force SandForce's controller to write as much data in parallel as possible that you see the performance differences between NAND vendors. As a result, the label on the back of your Vertex 2 box isn't lying - whether you have 34nm IMFT, 25nm IMFT or 32nm Hynix the drive will actually hit the same peak performance numbers. The problem is that the metrics depicted on the spec sheets aren't adequate to be considered fully honest.

A quick survey of all SF-1200 based drives shows the same problem. Everyone rates according to maximum performance specifications and no one provides any hint of what you're actually getting inside the drive.

SF-1200 Drive Rating Comparison
120GB Drive Rated Sequential Read Speed Rated Sequential Write Speed
Corsair Force F120 285 MB/s 275 MB/s
G.Skill Phoenix Pro 285 MB/s 275 MB/s
OCZ Vertex 2 Up to 280 MB/s Up to 270 MB/s

I should stop right here and mention that specs are rarely all that honest on the back of any box. Whether we're talking about battery life or SSD performance, if specs told the complete truth then I'd probably be out of a job. If one manufacturer is totally honest, its competitors will just capitalize on the aforementioned honesty by advertising better looking specs. And thus all companies are forced to bend the truth because if they don't, someone else will.

The Real Issue OCZ Listens, Again
Comments Locked

153 Comments

View All Comments

  • SolidSteel144 - Wednesday, April 6, 2011 - link

    Why weren't other controllers tested?
    AMD's SB850 should also be able to handle these drives at full speed.
  • A5 - Wednesday, April 6, 2011 - link

    If you go back and look at the Sandy Bridge launch article (http://www.anandtech.com/show/4083/the-sandy-bridg... you'll see that the Intel and AMD controllers have essentially identical performance. No reason to double his benchmark time for a 1% difference.
  • acripps - Wednesday, April 6, 2011 - link

    Newegg should have one to my door tomorrow......The last drop of my yule spending authorization. It will spend the next few years drifting through various machine incarnations....till it passes out of the pool in a give-away pc....somewhere around 2014.
  • watzupken - Wednesday, April 6, 2011 - link

    Following this issue I had with them, there won't be another OCZ product from me. Anand did point out a good thing that this issue is far from over since OCZ left buyers like myself and others out in the cold in the exchange. So other than the 60 and 120GB drives, no other drives are eligible for an exchange. Worst case, I got the affected drive back due to an exchange as the earlier drive failed. I return fast drive, get a slow drive back. How nice.
  • devlabz - Wednesday, April 6, 2011 - link

    Last few articles I ended up wondering why random read speed in SF controllers is slower than random write. I may have missed some important article explaining all that stuff, tho i read all of them. Isn't flash technology favoring the read speeds? Or it have something to do with lookups for the random data chunks?

    Most likely this will be the year where I'll try to get a SSD drive, and since my main reason will be to reduce the compilation times of my projects and I think that my biggest gain will be with highest random read IOPs drive? Am I wrong here? Or will it matter that much actually?
  • FunBunny2 - Wednesday, April 6, 2011 - link

    I've read, don't remember where, that the IMFT 25nm NAND has on-die ECC circuitry. So:
    - did you find such
    - is OCZ, or anyone, exercising it
    ???
  • Movieman420 - Wednesday, April 6, 2011 - link

    Yeah...Tosh also just introduced their 'built-in ECC' nand.
    http://www.techpowerup.com/143619/Toshiba-Debuts-S...
    The thing is, from what I understand anyway, that this nand will take the ECC burden off the controller. Thing is tho that SandForce controllers actually accell at ECC duties vs other controllers. This is a major selling point because as the die process continues to shrink, the ECC burden will continue to increase. So I guess I'm saying that I'm not too sure that more expensive ecc-nand would be practical if the controller doesn't suffer from the increasing ECC issue. Someone with more knowledge about how the SF controller works could probably answer the question best...cough*Anand*cough. ;)
  • Movieman420 - Wednesday, April 6, 2011 - link

    The dismal performance of the Hynix nand was news to me. It does however explain why there were many users with horrid performance posting on the Ocz forums. I suspect these were the ones who where told that the problem was with their PC/Lappy. It has never once been mentioned on the forum that some drives may have low performing nand inside. No wonder they kept reminding folks not to open their drives 'due to potential warranty issues'. It seems Ocz was being less than forthcoming even before the whole 25nm nand thing blew up. I really really REALLY hope that Ocz puts an end to the shady business we've seem for the last few months...they are a great company with a great product. Omission and/or deception isn't gonna fly, especially when you cater to enthusiasts who are not exactly stupid. It's those same 'enthusiasts' who made Ocz's early success possible in the first place. I know that things have since changed and now the vast majority of their sales are to commercial and enterprise customers. They'd never think of pulling this with those customers, but they'll do it to the very people who made their early success possible in the first place? This post and my previous one come from the prospective of a die hard customer who also happens to be an Ocz shareholder as well. Just wish I could afford enough to actually have a say so in the way things go down. :P
  • xboxist - Wednesday, April 6, 2011 - link

    Anand,

    I'm a very casual hardware enthusiast, and admittedly most of the technical aspects discussed in this article eludes me.

    With that said, I don't need to understand everything to continue to be impressed by your enthusiasm for the products in your industry, and the way you carry yourself as an ambassador for all of your users. The way you went after OCZ here has to be applauded.
  • fixxxer0 - Wednesday, April 6, 2011 - link

    after being disappointed in some way with just about every (large) company i've dealt with, whether it be insurance, auto makers, electronics, appliances, you name it... i am glad to see one finally accepting responsibility, and doing the right thing.

    i do not expect 100% perfection from every company at all times. i know sometime things are DOA, or defective, or flawed. but to actually have a company take that extra step and make it right without you having to sue them is commendable.

    personally, when it comes time on deciding which drive to go with, it will mainly be on the numbers, but OCZ's ethics will definitely give them the edge if there is a toss up.

Log in

Don't have an account? Sign up now