The Performance Degradation Problem

When Intel first released the X25-M, Allyn Malventano discovered a nasty corner case where the drive would no longer be able to run at its full potential. You basically had to hammer on the drive with tons of random writes for at least 20 minutes, but eventually the drive would be stuck at a point of no return. Performance would remain low until you secure erased the drive.

Although it shouldn't appear in real world use, the worry was that over time a similar set of conditions could align resulting in the X25-M performing slower than it should. Intel, having had much experience with similar types of problems (e.g. FDIV, Pentium III 1.13GHz), immediately began working on a fix and released the fix a couple of months after launch. The fix was nondestructive although you saw much better performance if you secure erased your drive first.

SandForce has a similar problem and I have you all and bit-tech to thank for pointing it out. In bit-tech's SandForce SSD reviews they test TRIM functionality by filling a drive with actual data (from a 500GB source including a Windows install, pictures, movies, documents, etc...). The drive is then TRIMed, and performance is measured.

If you look at bit-tech's charts you'll notice that after going through this process, the SandForce drives no longer recover their performance after TRIM. They are stuck in a lower performance state making the drives much slower when writing incompressible data.

You can actually duplicate the bit-tech results without going through all of that trouble. All you need to do is write incompressible data to all pages of a SandForce drive (user accessible LBAs + spare area), TRIM the drive and then measure performance. You'll get virtually the same results as bit-tech:

AS-SSD Incompressible Write Speed
  Clean Performance Dirty (All Blocks + Spare Area Filled) After TRIM
SandForce SF-1200 (120GB) 131.7MB/s 70.3MB/s 71MB/s

The question is why.

I spoke with SandForce about the issue late last year. To understand the cause we need to remember how SSDs work. When you go to write to an SSD, the controller must first determine where to write. When a drive is completely empty, this decision is pretty easy to make. When a drive is not completely full to the end user but all NAND pages are occupied (e.g. in a very well used state), the controller must first supply a clean/empty block for you to write to.

When you fill a SF drive with incompressible data, you're filling all user addressable LBAs as well as all of the drive's spare area. When the SF controller gets a request to overwrite one of these LBAs the drive has to first clean a block and then write to it. It's the block recycling path that causes the aforementioned problem.

In the SF-1200 SandForce can only clean/recycle blocks at a rate of around 80MB/s. Typically this isn't an issue because you won't be in a situation where you're writing to a completely full drive (all user LBAs + spare area occupied with incompressible data). However if you do create an environment where all blocks have data in them (which can happen over time) and then attempt to write incompressible data, the SF-1200 will be limited by its block recycling path.

So why doesn't TRIMing the entire drive restore performance?

Remember what TRIM does. The TRIM command simply tells the controller what LBAs are no longer needed by the OS. It doesn't physically remove data from the SSD, it just tells the controller that it can remove the aforementioned data at its own convenience and in accordance with its own algorithms.

The best drives clean dirty blocks as late as possible without impacting performance. Aggressive garbage collection only increases write amplification and wear on the NAND, which we've already established SandForce doesn't really do. Pair a conservative garbage collection/block recycling algorithm with you attempting to write an already full drive with tons of incompressible data and you'll back yourself into a corner where the SF-1200 continues to be bottlenecked by the block recycling path. The only way to restore performance at this point is to secure erase the drive.

This is a real world performance issue on SF-1200 drives. Over time you'll find that when you go to copy a highly compressed file (e.g. H264 video) that your performance will drop to around 80MB/s. However, the rest of your performance will remain as high as always. This issue only impacts data that can't be further compressed/deduped by the SF controller. While SandForce has attempted to alleviate it in the SF-1200, I haven't seen any real improvements with the latest firmware updates. If you're using your SSD primarily to copy and store highly compressed files, you'll want to consider another drive.

Luckily for SandForce, the SF-2500 controller alleviates the problem. Here I'm running the same test as above. Filling all blocks of the Vertex 3 Pro with incompressible data and then measuring sequential write speed. There's a performance drop, but it's no where near as significant as what we saw with the SF-1200:

AS-SSD Incompressible Write Speed
  Clean Performance Dirty (All Blocks + Spare Area Filled) After TRIM
SandForce SF-1200 (120GB) 131.7 MB/s 70.3 MB/s 71 MB/s
SandForce SF-2500 (200GB) 229.5 MB/s 230.0 MB/s 198.2 MB/s

It looks like SandForce has increased the speed of its block recycling engine among other things, resulting in a much more respectable worst case scenario of ~200MB/s.

Verifying the Fix

I was concerned that perhaps SandForce simply optimized for the manner in which AS-SSD and Iometer write incompressible data. In order to verify the results I took a 6.6GB 720p H.264 movie and copied it from an Intel X25-M G2 SSD to one of two SF drives. The first was a SF-1200 based Corsair Force F120, and the second was an OCZ Vertex 3 Pro (SF-2500).

I measured both clean performance as well as performance after I'd filled all blocks on the drive. The results are below:

6.6GB 720p H.264 File Copy (X25-M G2 Source to Destination)
  Clean Performance Dirty (All Blocks + Spare Area Filled) After TRIM
SandForce SF-1200 (120GB) 138.6 MB/s 78.5 MB/s 81.7 MB/s
SandForce SF-2500 (200GB) 157.5 MB/s 158.2 MB/s 157.8 MB/s

As expected the SF-1200 drive drops from 138MB/s down to 81MB/s. The drive is bottlenecked by its block recycling path and performance never goes up beyond 81MB/s.

The SF-2000 however doesn't drop in performance. Brand new performance is at 157MB/s and post-torture it's still at 157MB/s. What's interesting however is that the incompressible file copy performance here is lower than what Iometer and AS-SSD would have you believe. Iometer warns that even its fully random data pattern can be defeated by drives with good data deduplication algorithms. Unless there's another bottleneck at work here, it looks like the SF-2000 is still reducing the data that Iometer is writing to the drive. The AS-SSD comparison actually makes a bit more sense since AS-SSD runs at a queue depth of 32 and this simple file copy is mostly at a queue depth of 1. Higher queue depths will make better use of parallel NAND channels and result in better performance.

Sequential Read/Write Speed AnandTech Storage Bench 2011: Much Heavier
Comments Locked

144 Comments

View All Comments

  • semo - Saturday, February 19, 2011 - link

    Thanks for looking in to the issue Anand. Could you also find out whether Revo drives are affected as well?

    I'm surprised that Anandtech did not make any mention of the 25nm drives (it could have warned a lot of people of the shortcomings)
  • erson - Thursday, February 17, 2011 - link

    Anand, on page 3 - "In this case 4GB of the 256GB of NAND is reserved for data parity and the remaining 62GB is used for block replacement (either cleaning or bad block replacement)."

    I believe that should be 52GB instead of 62GB.

    Keep up the good work!
  • Anand Lal Shimpi - Thursday, February 17, 2011 - link

    So there's technically only 186GiB out of 256GiB of NAND available for user consumption. 4GiB is used for RAISE, the remaining 66GiB (the 62GiB is a typo) is kept as spare area.

    Take care,
    Anand
  • marraco - Thursday, February 17, 2011 - link

    Some data are written once, and never deleted. They are read again and again all the time.
    Such cells would last much longer than the rest.

    I wish to know if the controller is smart enough to move that rarely written data to the most used cells. That would enlarge the life of those cells, and release the less used cells, whose life will last longer.
  • Chloiber - Thursday, February 17, 2011 - link

    I'm pretty sure every modern Controller does that to a certain degree. It's called static and dynamic wear leveling.
  • philosofa - Thursday, February 17, 2011 - link

    Anand, you said that prices for the consumer Vertex 3 drives will probably be above those of the Vertex 2 series - is that a resultant increase in capacity, or will we see no (near term) price/size benefits from the move to 25nm nand?
  • vhx - Thursday, February 17, 2011 - link

    I am curious as to why there is no Vertex/2 comparison?
  • jonup - Thursday, February 17, 2011 - link

    Given the controversy with the currently shipped Vertex2s Anand chose to use F120 (similar if not identical to the Vertex2) .
  • theagentsmith - Thursday, February 17, 2011 - link

    Hello Anand
    great article as always and hope you're enjoying the nice city of Barcelona.

    I've read some articles suggesting to create a RAM disk, easily done with PCs with 6-8GBs, and move all the temporary folders, as well as page file and browser caches to that.
    They say this could bring better performance as well as reduce random data written to the SSD, albeit the last one isn't such a big problem as you said in the article.

    Can you become a mythbuster and tell us if there are tangible improvements or if it just doesn't worth it? Can it make the system unstable?
  • Quindor - Thursday, February 17, 2011 - link

    Maybe you missed this in the article, but as stated, with heavy usage of 7GB writing per day, it still will last you way beyond the warranty period of the drive. As such, maybe your temp files and browser cache, etc. to a ram drive won't really bring you much, because your drive is not going to die of it anyway.

    Better performance might be a different point. But the reason to buy an SSD is for great performance. Why then try to enhance this with a ram drive, that will only bring marginal performance gains. Doing so with a HDD might be a whole different thing together.

    My idea is that these temp files are temp files, and that if keeping them in memory would be so much faster, the applications would do this themselves. Also, leaving more memory free might give windows disk caching the chance to do exactly the same as your ram drive is doing for you.

Log in

Don't have an account? Sign up now