Final Words

In terms of absolute CPU performance, Sandy Bridge doesn't actually move things forward. This isn't another ultra-high-end CPU launch, but rather a refresh for the performance mainstream and below. As one AnandTech editor put it, you get yesterday's performance at a much lower price point. Lynnfield took away a lot of the reason to buy an X58 system as it delivered most of the performance with much more affordable motherboards; Sandy Bridge all but puts the final nail in X58's coffin. Unless you're running a lot of heavily threaded applications, I would recommend a Core i7-2600K over even a Core i7-980X. While six cores are nice, you're better off pocketing the difference in cost and enjoying nearly the same performance across the board (if not better in many cases).

In all but the heaviest threaded applications, Sandy Bridge is the fastest chip on the block—and you get the performance at a fairly reasonable price. The Core i7-2600K is tempting at $317 but the Core i5-2500K is absolutely a steal at $216. You're getting nearly $999 worth of performance at roughly a quarter of the cost. Compared to a Core i5-750/760, you'll get an additional 10-50% performance across the board in existing applications, and all that from a ~25% increase in clock speed. A big portion of what Sandy Bridge delivers is due to architectural enhancements, the type of thing we've come to expect from an Intel tock. Starting with Conroe, repeating with Nehalem, and going strong once more with Sandy Bridge, Intel makes this all seem so very easy.

Despite all of the nastiness Intel introduced by locking/limiting most of the Sandy Bridge CPUs, if you typically spend around $200 on a new CPU then Sandy Bridge is likely a better overclocker than anything you've ever owned before it. The biggest loser in the overclock locks is the Core i3 which now ships completely locked. Thankfully AMD has taken care of the low-end segments very well over the past couple of years. All Intel is doing by enforcing clock locks for these lower end chips is sending potential customers AMD's way.

The Core i3-2100 is still a step forward, but not nearly as much of one as the 2500K. For the most part you're getting a 5-20% increase in performance (although we did notice some 30-40% gains), but you're giving up overclocking as an option. For multithreaded workloads you're better off with an Athlon II X4 645; however, for lightly threaded work or a general purpose PC the Core i3-2100 is likely faster.

If this were a normal CPU, I'd probably end here, but Sandy Bridge is no normal chip. The on-die GPU and Quick Sync are both noteworthy additions. Back in 2006 I wondered if Intel would be able to stick to its aggressive tick-tock cadence. Today there's no question of whether or not Intel can do it. The question now is whether Intel will be able to sustain a similarly aggressive ramp in GPU performance and feature set. Clarkdale/Arrandale were both nice, but they didn't do much to compete with low-end discrete GPUs. Intel's HD Graphics 3000 makes today's $40-$50 discrete GPUs redundant. The problem there is we've never been happy with $40-$50 discrete GPUs for anything but HTPC use. What I really want to see from Ivy Bridge and beyond is the ability to compete with $70 GPUs. Give us that level of performance and then I'll be happy.

The HD Graphics 2000 is not as impressive. It's generally faster than what we had with Clarkdale, but it's not exactly moving the industry forward. Intel should just do away with the 6 EU version, or at least give more desktop SKUs the 3000 GPU. The lack of DX11 is acceptable for SNB consumers but it's—again—not moving the industry forward. I believe Intel does want to take graphics seriously, but I need to see more going forward.

Game developers need to put forth some effort as well. Intel has clearly tried to fix some of its bad reputation this go around, so simply banning SNB graphics from games isn't helping anyone. Hopefully both sides will put in the requisite testing time to actually improve the situation.

Quick Sync is just awesome. It's simply the best way to get videos onto your smartphone or tablet. Not only do you get most if not all of the quality of a software based transcode, you get performance that's better than what high-end discrete GPUs are able to offer. If you do a lot of video transcoding onto portable devices, Sandy Bridge will be worth the upgrade for Quick Sync alone.

For everyone else, Sandy Bridge is easily a no brainer. Unless you already have a high-end Core i7, this is what you'll want to upgrade to.

Power Consumption
POST A COMMENT

282 Comments

View All Comments

  • omelet - Tuesday, January 11, 2011 - link

    For almost any game, the resolution will not affect the stress on the CPU. It is no harder for a CPU to play the game at 2560x1600 than it is to play at 1024x768, so to ensure that the benchmark is CPU-limited, low resolutions are chosen.

    For instance, the i5 2500k gets ~65fps in the Starcraft test, which is run at 1024x768. The i5 2500k would also be capable of ~65fps at 2560x1600, but your graphics card might not be at that resolution.

    Since this is a review for a CPU, not for graphics cards, the lower resolution is used, so we know what the limitation is for just the CPU. If you want to know what resolution you can play at, look at graphics card reviews.
    Reply
  • Tom - Sunday, January 30, 2011 - link

    Which is why the tests have limited real world value. Skewing the tests to maximize the cpu differences makes new cpus look impressive, but it doesn't show the reality that the new cpu isn't needed in the real world for most games. Reply
  • Oyster - Monday, January 03, 2011 - link

    Maybe I missed this in the review, Anand, but can you please confirm that SB and SB-E will require quad-channel memory? Additionally, will it be possible to run dual-channel memory on these new motherboards? I guess I want to save money because I already have 8GB of dual-channel RAM :).

    Thanks for the great review!
    Reply
  • CharonPDX - Monday, January 03, 2011 - link

    You can confirm it from the photos of it only using two DIMMs in photo. Reply
  • JumpingJack - Monday, January 03, 2011 - link

    This has been discussed in great detail. The i7, i3, and i5 2XXX series is dual channel. The rumor mill is abound with SB-E having quad channel, but I don't recall seen anything official from Intel on this point. Reply
  • 8steve8 - Monday, January 03, 2011 - link

    the K processors have the much better IGP and a variable multiplier, but to use the improved IGP you need an H67 chipset, which doesn't support changing the multiplier? Reply
  • ViRGE - Monday, January 03, 2011 - link

    CPU Multiplier: Yes, H67 cannot change the CPU multiplier

    GPU Multiplier: No, even H67 can change the GPU multiplier
    Reply
  • mczak - Monday, January 03, 2011 - link

    I wonder why though? Is this just officially? I can't really see a good technical reason why CPU OC would work with P67 but not H67 - it is just turbo going up some more steps after all. Maybe board manufacturers can find a way around that?
    Or is this not really linked to the chipset but rather if the IGP is enabled (which after all also is linked to turbo)?
    Reply
  • Rick83 - Monday, January 03, 2011 - link

    I just checked the manual to MSI's 7676 Mainboard (high-end H67) and it lists cpu core multiplier in the bios (page 3-7 of the manual, only limitation mentioned is that of CPU support), with nothing grayed out and overclockability a feature. As this is the 1.1 Version, I think someone misunderstood something....

    Unless MSI has messed up its Manual after all and just reused the P67 Manual.... Still, the focus on over-clocking would be most ridiculous.
    Reply
  • Rick83 - Monday, January 03, 2011 - link

    also, there is this:http://www.eteknix.com/previews/foxconn-h67a-s-h67...

    Where the unlocked multiplier is specifically mentioned as a feature of the H67 board.
    So I think anandtech got it wrong here....
    Reply

Log in

Don't have an account? Sign up now