Final Words

In terms of absolute CPU performance, Sandy Bridge doesn't actually move things forward. This isn't another ultra-high-end CPU launch, but rather a refresh for the performance mainstream and below. As one AnandTech editor put it, you get yesterday's performance at a much lower price point. Lynnfield took away a lot of the reason to buy an X58 system as it delivered most of the performance with much more affordable motherboards; Sandy Bridge all but puts the final nail in X58's coffin. Unless you're running a lot of heavily threaded applications, I would recommend a Core i7-2600K over even a Core i7-980X. While six cores are nice, you're better off pocketing the difference in cost and enjoying nearly the same performance across the board (if not better in many cases).

In all but the heaviest threaded applications, Sandy Bridge is the fastest chip on the block—and you get the performance at a fairly reasonable price. The Core i7-2600K is tempting at $317 but the Core i5-2500K is absolutely a steal at $216. You're getting nearly $999 worth of performance at roughly a quarter of the cost. Compared to a Core i5-750/760, you'll get an additional 10-50% performance across the board in existing applications, and all that from a ~25% increase in clock speed. A big portion of what Sandy Bridge delivers is due to architectural enhancements, the type of thing we've come to expect from an Intel tock. Starting with Conroe, repeating with Nehalem, and going strong once more with Sandy Bridge, Intel makes this all seem so very easy.

Despite all of the nastiness Intel introduced by locking/limiting most of the Sandy Bridge CPUs, if you typically spend around $200 on a new CPU then Sandy Bridge is likely a better overclocker than anything you've ever owned before it. The biggest loser in the overclock locks is the Core i3 which now ships completely locked. Thankfully AMD has taken care of the low-end segments very well over the past couple of years. All Intel is doing by enforcing clock locks for these lower end chips is sending potential customers AMD's way.

The Core i3-2100 is still a step forward, but not nearly as much of one as the 2500K. For the most part you're getting a 5-20% increase in performance (although we did notice some 30-40% gains), but you're giving up overclocking as an option. For multithreaded workloads you're better off with an Athlon II X4 645; however, for lightly threaded work or a general purpose PC the Core i3-2100 is likely faster.

If this were a normal CPU, I'd probably end here, but Sandy Bridge is no normal chip. The on-die GPU and Quick Sync are both noteworthy additions. Back in 2006 I wondered if Intel would be able to stick to its aggressive tick-tock cadence. Today there's no question of whether or not Intel can do it. The question now is whether Intel will be able to sustain a similarly aggressive ramp in GPU performance and feature set. Clarkdale/Arrandale were both nice, but they didn't do much to compete with low-end discrete GPUs. Intel's HD Graphics 3000 makes today's $40-$50 discrete GPUs redundant. The problem there is we've never been happy with $40-$50 discrete GPUs for anything but HTPC use. What I really want to see from Ivy Bridge and beyond is the ability to compete with $70 GPUs. Give us that level of performance and then I'll be happy.

The HD Graphics 2000 is not as impressive. It's generally faster than what we had with Clarkdale, but it's not exactly moving the industry forward. Intel should just do away with the 6 EU version, or at least give more desktop SKUs the 3000 GPU. The lack of DX11 is acceptable for SNB consumers but it's—again—not moving the industry forward. I believe Intel does want to take graphics seriously, but I need to see more going forward.

Game developers need to put forth some effort as well. Intel has clearly tried to fix some of its bad reputation this go around, so simply banning SNB graphics from games isn't helping anyone. Hopefully both sides will put in the requisite testing time to actually improve the situation.

Quick Sync is just awesome. It's simply the best way to get videos onto your smartphone or tablet. Not only do you get most if not all of the quality of a software based transcode, you get performance that's better than what high-end discrete GPUs are able to offer. If you do a lot of video transcoding onto portable devices, Sandy Bridge will be worth the upgrade for Quick Sync alone.

For everyone else, Sandy Bridge is easily a no brainer. Unless you already have a high-end Core i7, this is what you'll want to upgrade to.

Power Consumption
POST A COMMENT

282 Comments

View All Comments

  • dacipher - Monday, January 03, 2011 - link

    The Core i5-2500K was just what i was looking for. Performance/ Price is where it needs to be and overclocking should be a breeze. Reply
  • vol7ron - Monday, January 03, 2011 - link

    I agree.

    "As an added bonus, both K-series SKUs get Intel’s HD Graphics 3000, while the non-K series SKUs are left with the lower HD Graphics 2000 GPU."

    Doesn't it seem like Intel has this backwards? For me, I'd think to put the 3000 on the lesser performing CPUs. Users will probably have their own graphics to use with the unlocked procs, whereas the limit-locked ones will more likely be used in HTPC-like machines.
    Reply
  • DanNeely - Monday, January 03, 2011 - link

    This seems odd to me unless they're having yield problems with the GPU portion of their desktop chips. That doesn't seem too likely though because you'd expect the mobile version to have the same problem but they're all 12 EU parts. Perhaps they're binning more aggressively on TDP, and only had enough chips that met target with all 12 EUs to offer them at the top of the chart. Reply
  • dananski - Monday, January 03, 2011 - link

    I agree with both of you. This should be the ultimate upgrade for my E8400, but I can't help thinking they could've made it even better if they'd used the die space for more CPU and less graphics and video decode. The Quick Sync feature would be awesome if it could work while you're using a discrete card, but for most people who have discrete graphics, this and the HD Graphics 3000 are a complete waste of transistors. I suppose they're power gated off so the thermal headroom could maybe be used for overclocking. Reply
  • JE_Delta - Monday, January 03, 2011 - link

    WOW........

    Great review guys!
    Reply
  • vol7ron - Monday, January 03, 2011 - link

    Great review, but does anyone know how often 1 active core is used. I know this is a matter of subjection, but if you're running an anti-virus and have a bunch of standard services running in the background, are you likely to use only one core when idling?

    What should I advise people, as consumers, to really pay attention to? I know when playing games such as Counter-Strike or Battlefield: Bad Company 2, my C2D maxes out at 100%, I assume both cores are being used to achieve the 100% utilization. I'd imagine that in this age, hardly ever will there be a time to use just one core; probably 2 cores at idle.

    I would think that the 3-core figures are where the real noticeable impact is, especially in turbo, when gaming/browsing. Does anyone have any more perceived input on this?
    Reply
  • dualsmp - Monday, January 03, 2011 - link

    What resolution is tested under Gaming Performance on pg. 20? Reply
  • johnlewis - Monday, January 03, 2011 - link

    According to Bench, it looks like he used 1680×1050 for L4D, Fallout 3, Far Cry 2, Crysis Warhead, Dragon Age Origins, and Dawn of War 2, and 1024×768 for StarCraft 2. I couldn't find the tested resolution for World of Warcraft or Civilization V. I don't know why he didn't list the resolutions anywhere in the article or the graphs themselves, however. Reply
  • karlostomy - Thursday, January 06, 2011 - link

    what the hell is the point of posting gaming scores at resolutions that no one will be playing at?

    If i am not mistaken, the grahics cards in the test are:
    eVGA GeForce GTX 280 (Vista 64)
    ATI Radeon HD 5870 (Windows 7)
    MSI GeForce GTX 580 (Windows 7)

    So then, with a sandybridge processor, these resolutions are irrelevant.
    1080p or above should be standard resolution for modern setup reviews.

    Why, Anand, have you posted irrelevant resolutions for the hardware tested?
    Reply
  • dananski - Thursday, January 06, 2011 - link

    Games are usually limited in fps by the level of graphics, so processor speed doesn't make much of a difference unless you turn the graphics detail right down and use an overkill graphics card. As the point of this page was to review the CPU power, it's more representative to use low resolutions so that the CPU is the limiting factor.

    If you did this set of charts for gaming at 2560x1600 with full AA & max quality, all the processors would be stuck at about the same rate because the graphics card is the limiting factor.

    I expect Civ 5 would be an exception to this because it has really counter-intuitive performance.
    Reply

Log in

Don't have an account? Sign up now