Availability and Medfield

We got Menlow in 2008. Intel promised Moorestown in 2009/2010. The chips are done, but you won’t see products until the second half of this year. We’ve actually seen Moorestown reference designs at this point so it’s safe to say that we’ll see some devices before the end of the year, but perhaps the most exciting ones won’t appear until later.

In 2011 we’ll meet Medfield. A 32nm shrink of Moorestown that combines Lincroft and Langwell into a single SoC. Medfield will double graphics performance, triple imaging capability (higher MP cameras) and bring full HD encode/decode (Blu-ray on my phone?). A reduction in chip count will mean even smaller form factors, while the move to a single 32nm SoC (rather than 45nm + 65nm) should give us longer battery life for idle, video and web browsing. Things like talk time are more a function of the modem than anything else. When you’re on a call the majority of Intel’s components are almost completely powered down, it’s just the modem and its friends that are sipping power.

Medfield is apparently on track, it’ll be in production next year and Intel told me not to expect any more updates on Medfield until the second half of 2010.

Performance: Moorestown Rocks? Final Words
Comments Locked

67 Comments

View All Comments

  • strikeback03 - Thursday, May 6, 2010 - link

    Actually, at least on Verizon, there are not many phones that last more than 2-3 days with relatively light use (5-10 min talk, 20-30 txt per day). This is actually something that has gone down in the past few years, as even basic phones get flashier UIs and use more power to run them. And while I support having some phones with weeklong standby time, I am fine with charging my phone or switching batteries every night so long as the phone can last a day in moderate use, which the Snapdragon phones typically can. I like to be able to access more than talk and text on the go.
  • v12v12 - Monday, May 10, 2010 - link

    WOW... standing ovation... All of my Droid friends are laughable! Constantly tethered to a power outlet! Always doing something useless and for sure entertainment Vs thinking quietly with their minds... pretty soon "dude I gotta go, my phone is about to die," yeah umm just how many hours have your spent actually TALKING on the dang thing vs playing around with it constantly like some personalized TOY?

    Battery life should be much more focused upon... The cattle-minded consumers are at it again; now tell me, had to only have 1 car, would you also buy a car that gets the WORST miles per gallon, but has a bunch of silly go-fast features that have you constantly at the fuel pump Vs getting to where you need/should be? Course that's why people usually own 2 cars to separate those needs Vs desires.... Today's "Ferrari" phones have the everyday idiot rambling along, bumping into shit, with their heads constantly fixated on the "screen," like drones. Talking...(?) haha you rarely see people talking with these things, it's just constant "entertainment," even in the most hindering places and social situations. So everyone's got a "Ferrari" phone, but end up trying to use it like a honda; sorry it just doesn't work like that. Faster = more fuel, LESS actual usefulness.
    __I'd rather have a phone with a decent amount of enjoyable features, that I can actually take with me on a trip to places that may or may not have power ON-DEMAND lol..
  • juampavalverde - Wednesday, May 5, 2010 - link

    The article and the new product is really interesting, but intel aint ready yet for smartphones, actually this moorestown platform looks much more interesting for pads and handhelds, having more space for such amount of chips, also being x86 with a custom linux. something like an ipad powered by this kind of atom starts to make sense, both from the performance and the battery life
  • WorldMage - Thursday, May 6, 2010 - link

    The interesting thing about all of the power draw figures given is that they were for workloads where
    the ATOM would be doing almost nothing. Video decode is done by the video decode HW where the
    atom might wake up every few seconds to load the next batch of data, similarly for audio playback and
    talk time (as you point out cellular modem is the only thing doing work). The thing that gets closest is web browsing, but assuming they are browsing 'static' pages (i.e. no Flash) the atom does a bit of work and probably sits essentially idle for easily 90% of the time.

    So it's not surprising they are in the same ballpark as other SOC's for those workloads since they seem to essentially be using the same HW blocks as the competing SOC's. I think it's very telling that all of the power consumption figures from Intel were for essentially non-Atom work loads.

    To which you might say "so what?" if those are the work flows that you care about, but that would ignore the fact that the whole point of the atom is to enable "fancy" UI's (and perhaps games) with lots of animation and stuff happening in the background and actually making use of the power of an ATOM.
    If you can't actually power the ATOM for an hour of actual use (browsing contacts, checking flights, web pages with Flash ads etc) won't the smart phone be almost worthless?
  • Th3Loonatic - Thursday, May 6, 2010 - link

    On page 3 of the article you misnamed the chips. The one on the left is Lincroft and the one on the right is Langwell.
  • Electrofreak - Friday, May 7, 2010 - link

    Anand, Cortex A8 on the 65 nm feature size is reported to use about 0.59 mW per MHz under load, and Cortex A8 on the 45 nm feature size is reported to use 20-30% less than that. For a little bit of added beliveability, Qualcomm's Snapdragon sips in the vicinity of 0.5 mW per MHz on the 65 nm scale, though that may be under optimal circumstances / marketing spin.

    Ultimately it's roughly half the power consumption Moorestown is reporting. And we notice that nowhere does Intel actually compare their power consumption figures to ARM's.

    Additionally, I was under the impression that the A4 had a dual-channel memory controller. I would guess LPDDR2 memory as well, but your guess is as good as mine.

    I suspect the S5L8930 in the A4 is a PA Semi (remember Apple bought them) reworked Samsung S5PV210, the dual-channel controller tablet / MID-oriented sister chip to the Samsung Hummingbird S5PC110 (which uses a single-channel controller with LPDDR2 support, if my resources are to be trusted.)
  • pradeepcvk - Tuesday, November 1, 2011 - link

    Anand liked your brief of S0Ix wrt Meego. I wonder how would it work with windows ACPI.
    could you please have an article for the same.

Log in

Don't have an account? Sign up now