If the Westmere Xeon EP were a car engine, it would've been made by Porsche. With "only" six cores, each core in the new Xeon offers almost twice the performance of the competition. A 32nm CPU that only occupies 248 mm2 the Westmere Xeon EP embodies pure refinement and intelligent performance, both Porsche traits. It's just made in Portland, not Zuffenhausen.

AMD's offering today is very different. Magny-cours is the CPU version of the American muscle car. It's a brutally large 12-core CPU: two dies, each measuring 346mm2 connected by a massive 24 link Hyper Transport pipe. AMD's Magny-cours Opteron has almost two billion transistors and 19.6MB of cache on-die.


12 cores, 692 mm2 die, 19.6MB of cache on-die

It's not all raw horsepower though. At 2.2GHz this 12-core monster is supposed to be content with only 80 precious watts, and 115W at most. HT assist also makes an appearance to keep CPU-CPU accesses to a necessary minimum, a problem that could get out of hand with 12 cores otherwise. AMD originally added HT assist with its first 6-core Opterons. So Magny-Cours is a like hybrid V12 Dodge Viper with traction control. Will this cocktail of raw core muscle and energy savings be enough to beat the competitor from Portland?

For once we could not resist the temptations of car analogies. As interesting as we found the Xeon Westmere EP, something was missing: a challenger, a competitor to make things more exiting.  In the last review, we just knew that the Xeon X5670 would crush the competition. This time is going to be close. AMD still won’t have a chance if your application does not scale well with extra cores. In that case you are better off with the higher clocked and better per-core performance of the Intel CPUs. But it is unclear if Intel will prevail in truly multi-threaded software now that a grim and determined AMD is willing to offer two CPUs for the price of one just to win the race.  

Magny-Cours
POST A COMMENT

58 Comments

View All Comments

  • wolfman3k5 - Monday, March 29, 2010 - link

    Great review! Thanks for the review, when will you guys be reviewing the AMD Phenom II X6 for us mere mortals? I wonder how the Phenom II X6 will stack up against the Core i7 920/930.

    Keep up the good work!
    Reply
  • ash9 - Tuesday, March 30, 2010 - link

    Since SSE4.1,SSE4.2 are not in AMD's , its Andand's way of getting an easy benchmark win, seeing some of these benchmark test probably use them-

    http://blogs.zdnet.com/Ou/?p=719
    August 31st, 2007
    SSE extension wars heat up between Intel and AMD

    "Microprocessors take approximately five years to go from concept to product and there is no way Intel can add SSE5 to their Nehalem product and AMD can’t add SSE4 to their first-generation 45nm CPU “Shanghai” or their second-generation 45nm “Bulldozer” CPU even if they wanted to. AMD has stated that they will implement SSE4 following the introduction of SSE5 but declined to give a timeline for when this will happen."

    asH
    Reply
  • mariush - Tuesday, March 30, 2010 - link

    One of the best optimized and multi threaded applications out there is the open source video encoder x264.

    Would it be possible to test how well 2 x 8 and 2x12 amd configurations work at encoding 1080p video at some very high quality settings?

    A workstation with 24 cores from AMD would cost almost as much as a single socket 6 cores system from Intel so it would be interesting to see if the increase in frequency and the additional SSE instructions would be more advantage than the number of cores.
    Reply
  • Aclough - Tuesday, March 30, 2010 - link

    I wonder if the difference between the Windows and Linux test results is related to the recentish changes in the scheduler? From what I understand the introduction of the CFS in 2.6.23 was supposed to be really good for large numbers of cores, and I'm given to understand that before that the Linux scheduler worked similarly to the recent Windows one. It would be interesting to try running that benchmark with a 2.6.22 kernel or one with the old O(1) patched in.

    Or it could just be that Linux tends to be more tuned for throughput whereas Windows tends to be more tuned for low latency. Or both.
    Reply
  • Aclough - Tuesday, March 30, 2010 - link

    In any event, the place I work for is a Linux shop and our workload is probably most similar to Blender, so we're probably going to continue to buy AMD. Reply
  • ash9 - Tuesday, March 30, 2010 - link

    http://www.egenera.com/pdf/oracle_benchmarks.pdf


    "Performance testing on the Egenera BladeFrame system has demonstrated that the platform
    is capable of delivering high throughput from multiple servers using Oracle Real Application
    Clusters (RAC) database software. Analysis using Oracle’s Swingbench demonstration tool
    and the Calling Circle schema has shown very high transactions-per-minute performance
    from single-node implementations with dual-core, 4-socket SMP servers based on Intel and
    AMD architectures running a 64-bit-extension Linux operating system. Furthermore, results
    demonstrated 92 percent scalability on either server type up to at least 10 servers.
    The BladeFrame’s architecture naturally provides a host of benefits over other platforms
    in terms of manageability, server consolidation and high availability for Oracle RAC."
    Reply
  • nexox - Tuesday, March 30, 2010 - link

    It could also be that Linux has a NUMA-aware scheduler, so it'd try to keep data stored in ram which is connected to the core that's running the thread which needs to access the data. I probably didn't explain that too well, but it'd cut down on memory latency because it would minimize going out over the HT links to fetch data. I doubt that Windows does this, given that Intel hasn't had NUMA systems for very long yet.

    I sort of like to see more Linux benchmarks, since that's really all I'd ever consider running on data center-class hardware like this, and since apparently Linux performance has very little to do with Windows performance, based on that one test.
    Reply
  • yasbane - Wednesday, May 19, 2010 - link

    Agreed. I do find it disappointing that they put so few benchmarks for Linux for servers, and so many for windows.

    -C
    Reply
  • jbsturgeon - Tuesday, March 30, 2010 - link

    I like the review and enjoyed reading it. I can't help but feel the benchmarks are less a comparison of CPU's and more a study on how well the apps can be threaded as well as the implementation of that threading -- higher clocked cpus will be better for serial code and more cores will win for apps that are well threaded. In scientific number crunching (the code I write ), more cores always wins (AMD). We do use Fluent too, so thanks for including those benchamarks!!
    Reply
  • jbsturgeon - Tuesday, March 30, 2010 - link

    Obviously that rule can be altered by a killer memory bus :-). Reply

Log in

Don't have an account? Sign up now