Performance - A Huge Improvement

There's no need for an introduction. Arrandale is going to deliver the single largest performance improvement we've seen from a new mobile processor in years. Hyper-Threading brings the many of the benefits of having a quad-core processor without the added power consumption. Turbo is also extremely useful in mobile since it's one of the most TDP-constrained environments you can imagine.

First up we have SYSMark 2007. There just isn't a better way of summing up the performance improvement:

SYSMark 2007 Core 2 Duo P8700 (2.53GHz) Core i5-540M (2.53GHz) Arrandale Advantage
Overall 160 191 19.4%
E-Learning 143 159 11.2%
Video Creation 190 241 26.8%
Productivity 160 178 11.2%
3D 150 194 29.3%

 

Overall performance is almost 20% faster on a 2.53GHz Core i5-540M vs. a 2.53GHz Core 2 Duo P8700. The smallest performance difference we see here is "only" 11% while 3D rendering kicks the gap up to nearly 30%.

Cinebench R10 gives us a look at single threaded performance on the platform:

Cinebench R10 Core 2 Duo P8700 (2.53GHz) Core i5-540M (2.53GHz) Arrandale Advantage
Single Thread 2814 3894 38.4%
Multiple Threads 5954 8544 43.5%

 

If you do any 3D rendering on your notebook but don't want to give up the form factor to go quad-core, Arrandale is your answer.

It's not all for 3D professionals. Video encoding performance, something arguably a lot more consumer-facing, gets a huge improvement as well. In our x264 HD 3.03 encoding test performance improved 26% and 46% in the first and second encoding passes respectively. Like I said before, Arrandale is fast.

x264-HD 3.03 Core 2 Duo P8700 (2.53GHz) Core i5-540M (2.53GHz) Arrandale Advantage
1st Pass 35.6 fps 45.0 fps 26.4%
2nd Pass 8.7 fps 12.7 fps 45.9%

 

Photographers often like to carry around their work on notebooks so I thought I'd run our Photoshop CS4 script on the Arrandale and Core 2 platforms to see how they handled it. Surprisingly enough there was very little performance difference between the chips. The Core i5-540M was only 7% faster than the equivalently clocked Core 2. Not all of your performance gains are you going to be huge from Arrandale, but they have the potential to be (and most will be from what I've seen).

Photoshop CS4 Core 2 Duo P8700 (2.53GHz) Core i5-540M (2.53GHz) Arrandale Advantage
Speed Test 35.3 seconds 32.9 seconds 7.3%

 

Arrandale, like Clarkdale, brings the GPU on-package. Not only is it on the same package as the CPU but at 45nm it's a lot better than the previous GMA X4500 HD graphics that was in all high end Core 2 based notebooks. We saw in our Clarkdale article that Intel has basically been able to deliver integrated graphics performance equal to that of AMD's 790GX, so you can expect some decent gains here as well.

I ran our World of Warcraft test on both test systems, running at 800 x 600 at the lowest quality settings:

World of Warcraft Core 2 Duo P8700 (2.53GHz) Core i5-540M (2.53GHz) Arrandale Advantage
800 x 600 - Low Quality 19.1 fps 43.8 fps 129%

 

Arrandale's integrated graphics is more than twice as fast. Dare I say that it's even playable? We still need to look at compatibility across a larger selection of games, but so far the latest IGP from Intel is doing much better than previous efforts.

The Platform Battery Life - Technically, No Better
POST A COMMENT

38 Comments

View All Comments

  • bsoft16384 - Monday, January 04, 2010 - link

    The biggest problem with Intel graphics isn't performance - it's image quality. Intel's GPUs don't have AA and their AF implementation is basically useless.

    Add in the fact that the Intel recently added a 'texture blurring' feature to their drivers to improve performance (which is, I believe, on by default) and you end up with quite a different experience compared with a Radeon 4200 or GeForce 9400M based solution, even if the performance is nominally similar.

    Also, I've noticed that Intel graphics do considerably better in benchmarks than they do in the real world. The Intel GMA X4500MHD in my CULV-based Acer 1410 does around ~650 in 3DMark06, which is about 50% "faster" than my friend's 3-year-old GeForce 6150-based AMD Turion notebook. But get in-game, with some particle effects going, and the Intel pisses all over the floor (~3-4fps) while the GeForce 6150 still manages to chug along at 15fps or so.
    Reply
  • bobsmith1492 - Monday, January 04, 2010 - link

    That is, Intel's integrated graphics are so slow that even if they offered AA/AF they are too slow to actually be able to use them. The same goes for low-end Nvidia integrated graphics as well. Reply
  • bsoft16384 - Tuesday, January 05, 2010 - link

    Not true for NV/AMD. WoW, for example, runs fine with AA/AF on GeForce 9400. It runs decent with AF on the Radeon 3200 too.

    Remember that 20fps is actually pretty playable in WoW with hardware cursor (so the cursor is always 20fps).
    Reply
  • bobsmith1492 - Monday, January 04, 2010 - link

    Do you really think you can actually use AA/AF on an integrated Intel video processor? I don't believe your point is relevant. Reply
  • MonkeyPaw - Monday, January 04, 2010 - link

    Yes, since AA and AF can really help the appearance of older titles. Some of us don't expect an IGP to run Crysis. Reply
  • JarredWalton - Monday, January 04, 2010 - link

    The problem is that AA is really memory intensive, even on older titles. Basically, it can double the bandwidth requirements and since you're already sharing bandwidth with the CPU it's a severe bottleneck. I've never seen an IGP run 2xAA at a reasonable frame rate. Reply
  • bsoft16384 - Tuesday, January 05, 2010 - link

    Newer AMD/NV GPUs have a lot of bandwidth saving features, so AA is pretty reasonable in many less demanding titles (e.g. CS:S or WoW) on the HD4200 or GeForce 9400. Reply
  • bsoft16384 - Tuesday, January 05, 2010 - link

    And, FYI, yes, I've tried both. I had a MacBook Pro (13") briefly, and while I ultimately decided that the graphics performance wasn't quite good enough (compared with, say, my old T61 with a Quadro NVS140m), it was still night and day compared with the GMA X4500.

    The bottom line in my experience is that the GMA has worse quality output (particularly texture filtering) and that it absolutely dies with particle effects or lots of geometry.

    WoW is not at all a shader-heavy game, but it can be surprisingly geometry and texture heavy for low-end cards in dense scenes. The Radeon 4200 is "only" about 2x as fast as the GMA X4500 in most benchmarks, but if you go load up demanding environments in WoW you'll notice that the GMA is 4 or 5 times slower. Worse, the GMA X4500 doesn't really get any faster when you lower the resolution or quality settings.

    Maybe the new generation GMA solves these issues, but my general suspicion is that it's still not up-to-par with the GeForce 9400 or Radeon 4200 in worst-case performance or image quality, which is what I really care about.
    Reply
  • JarredWalton - Tuesday, January 05, 2010 - link

    Well, that's the rub, isn't it: GMA 4500MHD is not the same as the X4500 in the new Arrandale CPUs. We don't know everything that has changed, but performance alone shows a huge difference. We went from 10 shader units to 12 and performance at times more than doubled. Is it driver optimizations, or is it better hardware? I'm inclined to think it's probably some of both, and when I get some Arrandale laptops to test I'll be sure to run more games on them. :-) Reply
  • dagamer34 - Monday, January 04, 2010 - link

    Sounds like while performance increased, battery life was just "meh". However, does the increased performance factor in the Turbo Boost that Arrandale can perform or was the clock speed locked at the same rate as the Core 2 Duo?

    And what about how battery life is affected by boosting performance with Turbo Boost? I guess we'll have to wait for production models for more definitive answers (I'm basically waiting for the next-gen 13.3" MacBook Pro to replace my late-2006 MacBook Pro).
    Reply

Log in

Don't have an account? Sign up now