The Competitors

For the most part, Intel doesn't let anyone else manufacture drives using its controller (the lone exception being Kingston). Indilinx and Samsung however both sell their controllers and designs to many other vendors, who then repackage them and sell them as their own SSDs. The table below is a decoder ring of the drives I tested and their equivalents in the marketplace:

Drive Controller The Same As
Patriot Torqx Indilinx Barefoot (MLC)

Corsair Extreme Series X128
G.Skill Falcon
OCZ Vertex
SuperTalent UltraDrive ME

OCZ Agility Indilinx Barefoot (non Samsung MLC) N/A
OCZ Vertex EX Indilinx Barefoot (SLC) SuperTalent UltraDrive LE
OCZ Summit Samsung RBB (MLC) Corsair Performance Series P256

 

While I used the Torqx from Patriot as my Indilinx MLC drive, it's the same drive and uses the same firmware as OCZ's famed Vertex drive or the new Cosair Extreme Series SSD. The only exception on this list is the OCZ Agility. The Agility uses the same Barefoot controller as the Torqx, Vertex, UltraDrive ME and Corsair X series, but it uses non-Samsung flash memory to lower cost. The Agility currently ships with either Toshiba or Intel flash, but should be roughly the same performance as the other Indilinx MLC drives.

I included the SLC drives as a reference point, but for desktop use they are overkill. Not only is their firmware not optimized for desktop usage patterns, but they are far more expensive on a cost-per-GB basis.

All of the drives used the latest firmwares at the time of publication.

The Pricing

The table below is the pricing comparison I went through yesterday:

Drive NAND Capacity Cost per GB Price
Intel X25-M (34nm) 80GB $2.81 $225
Intel X25-M (34nm) 160GB $2.75 $440
OCZ Vertex (Indilinx) 64GB $3.41 $218
OCZ Vertex (Indilinx) 128GB $3.00 $385
Patriot Torqx (Indilinx) 64GB $3.48 $223
Patriot Torqx (Indilinx) 128GB $2.85 $365
OCZ Agility (Indilinx, non-Samsung Flash) 64GB $2.77 $177
OCZ Agility (Indilinx, non-Samsung Flash) 128GB $2.57 $329
OCZ Summit (Samsung) 128GB $3.04 $389

 

The new 34nm drives were supposed to start shipping yesterday, but I've yet to see them available online. It's also worth mentioning that Intel doesn't give out street pricing, only 1,000 unit pricing. The street price of the X25-M G2 drives could be higher at first, similar to what we saw with the 1st gen drives, eventually leveling off below the 1Ku pricing.

Inside the Drive: 2x Density Flash and more DRAM The Performance
POST A COMMENT

88 Comments

View All Comments

  • Robear - Thursday, July 23, 2009 - link

    Thanks for the quick update. I'm on the edge of my seat with these new drives. The suspense reminds me of when Conroe first debuted ;)

    Given the apparent quality of the controller, I'd like to assume that the low sequential writes were intentional to some degree. I'm sure Intel's engineers had to make some design decisions, and it appears as if they've chosen to sacrifice sequential writes in most (if not all) cases in favor of random writes.

    I think Intel is on the right track with the controllers on these drives. If you look at desktop usage patterns, your random reads / writes reign supreme. Sequential writes are the most infrequent operations.

    Anyway, that's based on the assumption that random write performance and sequential write performance are mutually exclusive somehow (supported by the X-25E benches...).


    VERY interesting.

    I'm also very interested to see how interfaces and controllers try to keep up with the drastic increase in storage bandwidth for the enterprise. The current mass storage architecture is mature and versatile. Going straight PCI-E seems to be a step backwards in architecture in exchange for raw performance. It seems to me to be an immediate stop-gap, and I'm not sure how many serious companies will buy into this fusion-IO thing long-term.

    I'd personally rather have 7 SLC's in a RAID 5EE over two redundant PCI-E cards and one hot-spare. It's far more cost efficient, and I think everyone will agree hot-swapping SAS/SATA is a lot easier than hot-swapping an internal card.

    All and all, very exciting.
    Reply
  • glugglug - Thursday, July 23, 2009 - link

    PCI-E Will be even be an even shorter term stop gap than most people realize.

    PCI-E x1 bandwidth is the same as regular PCI: 133MBps.
    So PCI-E x4 like the Fusion I/O uses is actually slightly below the SATA 3.0 600MBps spec that will be out soon.
    Reply
  • glugglug - Thursday, July 23, 2009 - link

    Actually I just looked this up, its rated higher than I thought, especially since they doubled it with PCI-express 2.0.

    2.0 is 500MB/s per lane, so theoretically the PCI-e 4x cards could get up to 2GB/s

    Still with the rate these things are improving I think that is 2 years away.
    Reply
  • iwodo - Thursday, July 23, 2009 - link

    You really dont need 4x Slot. PCI - E 2.0 2x Slot already gives you 1GB/s
    Since PCI-E Express 3.0 is coming at 1GB/s single Slot. I think 2x for compatibility is reasonable enough.
    Reply
  • araczynski - Thursday, July 23, 2009 - link

    ...this is basically saying the drives are great (assuming the price is much better than the X25-E) as long as you're not moving large files around?

    i.e. the relatively infrequent software installations wouldn't be optimal, but otherwise it would be quite a good drive? or like an OS drive basically?

    can you throw in an average 7200 rpm hard drive into the mix for a relative comparison?
    Reply
  • araczynski - Thursday, July 23, 2009 - link

    ooops, never mind, forgot about the velociraptor in there :) Reply
  • bobsmith1492 - Thursday, July 23, 2009 - link

    Perhaps a log scale would be appropriate to show the orders of magnitude in difference between the drives! Reply
  • iwodo - Thursday, July 23, 2009 - link

    The 64Gb 8Gx8 MLC cost average 12.5. Ofcoz since Intel are making the Flash themselves ( or Joint Venture ) they are already making a profit on Flash. 10 of those = 125. I think controller may be a 90nm tech cost around $15. Again Intel is making profit on the controller as well. Packaging and DRAM etc, the 80GB SSD should cost $160 to make.

    I believe that NAND price is still based on 50NM - 40NM price. So 34nm should cost less. Hopefully in a years time it will cost 50% less.

    In 2010, SSD should finally take off.
    Reply
  • KenAF - Thursday, July 23, 2009 - link

    Has Intel committed to supporting TRIM with a firmware update on G2? Reply
  • smjohns - Thursday, July 23, 2009 - link

    Yeah Intel have confirmed that TRIM support will be delivered as part of a firmware upgrade to be released when Windows7 supports this. Apparently for XP & Vista machines this will also require supporting software to be installed as neither have inbuilt TRIM functionality.

    Not so good news for the original G1 drives as it does not seem that Intel will be releasing similar firmware for these.
    Reply

Log in

Don't have an account? Sign up now