Pricing

Pricing steers most of the purchasing decisions so let's look at how the best server CPUs from Intel and AMD compare. We compare the 45nm "Nehalem" Xeon with the 45nm "Shanghai" Opteron.

Pricing
Intel Xeon model Speed (GHz) / TDP (W) Price AMD Opteron model Speed (GHz) Price
X5570 2.93 / 95W $1386      
X5560 2.80 / 95 W $1172      
X5550 2.66 / 95W $958 2389 2.9 / 75-115W $989
      2387 2.8 / 75W $873
E5540 2.53 / 80W $744 2384 2.7 / 75-115W $698
E5530 2.4 / 80W $530 2382 2.6 / 75-115W $523
L5520 2.26 / 60W $530 2376 HE 2.3 / 55-79W $575
L5510 2.13/ 60W $423 2374 HE 2.2 / 55-79W $450
E5520 2.26 $373 2380 2.5 / 75-115W $377
E5506 2.13 $266 2378 2.4 / 75-115W $255
E5504 2 $224      
E5502 1.86 $188 2376 2.3 / 75-115W $174

A few interesting observations can be made. First, AMD's 45nm process is a lot healthier than the 65nm process. Only a few months after the introduction of a 2.7GHz part, AMD is not only capable of boosting the clock speed to 2.9GHz but it does so without increasing the TDP. It is also interesting that AMD CPUs are covering a very narrow clock speed band at 75W from 2.4GHz to 2.9GHz. This indicates that AMD is really getting some good clock speeds out of the 45nm CPUs. This is a huge contrast with what we saw in 2007 and the first half of 2008. We were used to seeing AMD stuck at 2.3GHz, and those clock speeds are now all low energy parts.

AMD recognizes that Intel has the faster micro architecture and positions the 2.9GHz Shanghai at the level of the X5550. Intel is untouchable at the high-end but leaves AMD some chances at the low end. It positions a 1.86GHz without any Hyper-Threading or Turbo mode against a 2.3GHz chip. Unfortunately, those chips are not in our lab so we can't draw any conclusions.

Power Consumption Market Analysis
POST A COMMENT

44 Comments

View All Comments

  • snakeoil - Monday, March 30, 2009 - link

    oops it seems that hypertreading is not scaling very well too bad for intel Reply
  • eva2000 - Tuesday, March 31, 2009 - link

    Bloody awesome results for the new 55xx series. Can't wait to see some of the larger vBulletin forums online benefiting from these monsters :) Reply
  • ssj4Gogeta - Monday, March 30, 2009 - link

    huh? Reply
  • ltcommanderdata - Monday, March 30, 2009 - link

    I was wondering if you got any feeling whether Hyperthreading scaled better on Nehalem than Netburst? And if so, do you think this is due to improvements made to HT itself in Nehalem, just do to Nehalem 4+1 instruction decoders and more execution units or because software is better optimized for multithreading/hyperthreading now? Maybe I'm thinking mostly desktop, but HT had kind of a hit or miss reputation in Netburst, and it'd be interesting to see if it just came before it's time. Reply
  • TA152H - Monday, March 30, 2009 - link

    Well, for one, the Nehalem is wider than the Pentium 4, so that's a big issue there. On the negative side (with respect to HT increase, but really a positive) you have better scheduling with Nehalem, in particular, memory disambiguation. The weaker the scheduler, the better the performance increase from HT, in general.

    I'd say it's both. Clearly, the width of Nehalem would help a lot more than the minor tweaks. Also, you have better memory bandwidth, and in particular, a large L1 cache. I have to believe it was fairly difficult for the Pentium 4 to keep feeding two threads with such a small L1 cache, and then you have the additional L2 latency vis-a-vis the Nehalem.

    So, clearly the Nehalem is much better designed for it, and I think it's equally clear software has adjusted to the reality of more computers having multiple processors.

    On top of this, these are server applications they are running, not mainstream desktop apps, which might show a different profile with regards to Hyper-threading improvements.

    It would have to be a combination.
    Reply
  • JohanAnandtech - Monday, March 30, 2009 - link

    The L1-cache and the way that the Pentium 4 decoded was an important (maybe even the most important) factor in the mediocre SMT performance. Whenever the trace cache missed (and it was quite small, something of the equivalent of 16 KB), the Pentium 4 had only one real decoder. This means that you have to feed two threads with one decoder. In other words, whenever you get a miss in the trace cache, HT did more bad than good in the Pentium 4. That is clearly is not the case in Nehalem with excellent decoding capabilities and larger L1.

    And I fully agree with your comments, although I don't think mem disambiguation has a huge impact on the "usefullness" of SMT. After all, there are lots of reasons why the ample execution resources are not fully used: branches, L2-cache misses etc.
    Reply
  • IntelUser2000 - Tuesday, March 31, 2009 - link

    Not only that, Pentium 4 had the Replay feature to try to make up for having such a long pipeline stage architecture. When Replay went wrong, it would use resources that would be hindering the 2nd thread.

    Core uarch has no such weaknesses.
    Reply
  • SilentSin - Monday, March 30, 2009 - link

    Wow...that's just ridiculous how much improvement was made, gg Intel. Can't wait to see how the 8-core EX's do, if this launch is any indication that will change the server landscape overnight.

    However, one thing I would like to see compared, or slightly modified, is the power consumption figures. Instead of an average amount of power used at idle or load, how about a total consumption figure over the length of a fixed benchmark (ie- how much power was used while running SPECint). I think that would be a good metric to illustrate very plainly how much power is saved from the greater performance with a given load. I saw the chart in the power/performance improvement on the Bottom Line page but it's not quite as digestible as or as easy to compare as a straight kW per benchmark figure would be. Perhaps give it the same time range as the slowest competing part completes the benchmark in. This would give you the ability to make a conclusion like "In the same amount of time the Opteron 8384 used to complete this benchmark, the 5570 used x watts less, and spent x seconds in idle". Since servers are rarely at 100% load at all times it would be nice to see how much faster it is and how much power it is using once it does get something to chew on.

    Anyway, as usual that was an extremely well done write up, covered mostly everything I wanted to see.
    Reply
  • 7Enigma - Wednesday, April 01, 2009 - link

    I think that is a very good method for determining total power consumption. Obviously this doesn't show cpu power consumption, but more importantly the overall consumption for a given unit of work.

    Nice thinking.
    Reply
  • JohanAnandtech - Wednesday, April 01, 2009 - link

    I am trying to hard, but I do not see the difference with our power numbers. This is the average power consumption of one CPU during 10 minutes of DVD-store OLTP activity. As readers have the performance numbers, you can perfectly calculate performance/watt or per KWh. Per server would be even better (instead of per CPU) but our servers were too different.

    Or am I missing something?
    Reply

Log in

Don't have an account? Sign up now