The Blind SSD

Modern OSes talk to hard drives using logical block addressing. While hard drives are rotational media, logical block addressing organizes sectors on a hard drive linearly. When you go to save a file, Windows simply issues a write command for your file at a specific logical block address, say LBA 15 for example.

Your OS knows what LBAs are available and which ones are occupied. When you delete a file, the LBAs that point to that file on your hard disk are listed as available. The data you’ve deleted hasn’t actually been removed and it doesn’t get wiped until those sectors on the drive are actually overwritten.

Believe it or not, SSDs actually work the same way.

The flash translation layer in a SSD controller maps LBAs to pages on the drive. The table below explains what happens to the data on the SSD depending on the action in the OS:

Action in the OS Reaction on a HDD Reaction on an SSD
File Create Write to a Sector Write to a Page
File Overwrite Write new data to the same Sector Write to a Different Page if possible, else Erase Block and Write to the Same Page
File Delete Nothing Nothing

 

When you delete a file in your OS, there is no reaction from either a hard drive or SSD. It isn’t until you overwrite the sector (on a hard drive) or page (on a SSD) that you actually lose the data. File recovery programs use this property to their advantage and that’s how they help you recover deleted files.

The key distinction between HDDs and SSDs however is what happens when you overwrite a file. While a HDD can simply write the new data to the same sector, a SSD will allocate a new (or previously used) page for the overwritten data. The page that contains the now invalid data will simply be marked as invalid and at some point it’ll get erased.

Strength in Numbers, What makes SSDs Fast Understanding the SSD Performance Degradation Problem
POST A COMMENT

240 Comments

View All Comments

  • Bytales - Friday, March 27, 2009 - link

    As i read the article, i'm thinking of ways to slow down the down the degrading process. Intel is gonna ship x-25m 320gb this year. If i buy this drive and use it as an OS drive, i will obviously won't need the whole 320GB. Say i would need only 40 to 50 GB. I can make a secure erase (if the drive isn't new), made a partition of 50GB, and leave the remaining space unpartitioned. Will that solve the problem in any way ?
    Another way to solve the problem, would be a method inside the OS. The OS could use a user controlled % of the RAM memory, as a cache for those small 4kb files. Since ram reads and writes are way faster, i think it will also help. Say you got 8GB ram, and use 2gb for this purpose, and then the OS would only have 6gb ram for its use, while 2gb is used for these smaller files. That would increase also the lifespan of the SSD. Can this be possible ?
    Reply
  • Hellfire26 - Thursday, March 26, 2009 - link

    In reference to SSD's, I have read a lot of articles and comments about improved firmware and operating system support. I hope manufacturers don't forget about the on-board RAID controller.

    From the articles and comments made by users around the web, who have tested SSD's in a Raid 0 configuration, I believe that two Intel X25-M SSD's in a RAID 0 configuration would more than saturate current on-board RAID controllers.

    Intel is doing a die shrink of the NAND memory that is going into their SSD's come this fall. I would expect these new Intel SSD's to show faster read and write times. Other manufacturers will also find ways to increase the speed of their SSD's.

    SSD's scale well in a RAID configuration. It would be a shame if the on-board RAID controller limited our throughput. The alternative would be very expensive add-in RAID cards.
    Reply
  • FlaTEr1C - Wednesday, March 25, 2009 - link

    Anand, once again you wrote an article that no one else could've written. This is why I'm reading this site since 2004 and will always do. Your articles and reviews are without exception unique and a must-read. Thank you for this thorough background, analysis and review of SSD.

    I was looking a long time for a solution to make my desktop experience faster and I think I'll order a 60GB Vertex. 200€(germany) is still a lot of money but it will be worth it.

    Once again, great work Anand!
    Reply
  • blackburried - Wednesday, March 25, 2009 - link

    It's referred to as "discard" in the kernel functions.

    It works very well w/ SSD's that support TRIM, like fusion-io's drives.
    Reply
  • Iger - Wednesday, March 25, 2009 - link

    This is the best review I've read in a very long time.
    Thank you very much!
    Reply
  • BailoutBenny - Tuesday, March 24, 2009 - link

    Great in depth article on flash based SSDs. I'm waiting for PRAM though. Reply
  • orclordrh - Tuesday, March 24, 2009 - link

    Very illuminating article, very well written and researched. It made me glad that I didn't pull the trigger on an SSD for my I7 machine and regret not buying OCZ memory! I'm interested in adding an SSD as the scratch disk for Photoshop CS4 to use. I don't really launch applications very often, say once a week on the weekly reboot and keep 6-8 apps open at all times. I have 12GB of memory for that. The benchmarks were very interesting, but what sort of activity does Photoshop scratch usage create? Large files or random writes? What type of SSD would be most cost effective here?
    An SSD does sound better than a SSD!
    Reply
  • semo - Wednesday, March 25, 2009 - link

    wait for ddr3 to enter the mainstream and buy loads of memory.

    use a ramdisk for your adobe scratch area. much faster than ssd and no wear to worry about (not that you would worry that much with modern ssds anyway).

    http://www.ghacks.net/2007/12/14/use-a-ramdisk-to-...">http://www.ghacks.net/2007/12/14/use-a-ramdisk-to-...

    there is also a paid for and more feature rich ramdisk out there. can't remember the name
    Reply
  • strikeback03 - Wednesday, March 25, 2009 - link

    I'll have to check when I get home, but I believe the recommended size for the scratch disk is upwards of 10GB. So would need a motherboard that supports a LOT of RAM to give enough to main memory plus a scratch disk. Reply
  • strikeback03 - Wednesday, March 25, 2009 - link

    I was wondering the same thing. I'd guess it would be a lot of writing/erasing, so an SSD might not be the best from a longevity standpoint, but if your system is hitting the scratch disk often then the speed might make it worthwhile. Reply

Log in

Don't have an account? Sign up now