The Phenom Inspired, Core i7-like, Phenom II

Want to hear something funny? When AMD launched the original Phenom, it was a unique looking architecture, something AMD touted as a significant advantage due to its "native" monolithic quad-core design (four cores, one die). I often argued that it wasn't an advantage, simply because the performance numbers didn't back up AMD's claims. AMD never won a real world desktop benchmark because of the monolithic quad-core design.

Intel followed up with Nehalem (Core i7), a microprocessor that had a very Phenom-like cache hierarchy (four cores, private L2 caches, one large shared L3 cache), but with much better performance.

Phenom II builds upon the same architecture as the original Phenom, hardly changed, but improves on a few key limitations. This isn't a new microarchitecture, this is a 45nm shrink of Phenom. In a sense, AMD gave up on improving the original Phenom. Early on after Phenom's release AMD went head in the sand and did whatever was necessary to make the 45nm transition perfect. Deneb, as it was called internally, had to succeed - because AMD as a company wasn't going to survive on the backs of the GPU division forever. It's somewhat ironic that Intel was able to execute a better Phenom-like microarchitecture before AMD.

Processor AMD Phenom II AMD Phenom Intel Core i7 Intel Core 2 Quad Q8xxx/Q9xxx
Manufacturing Process 45nm 65nm 45nm 45nm
L1 Cache 64K + 64K per core 64K + 64K per core 32KB + 32KB per core 32KB + 32KB per core
L2 Cache 512KB per core 512KB per core 256KB per core 2x3MB, 2x4MB or 2x6MB
L3 Cache 6MB 2MB 8MB -
Transistor Count 758M 450M 731M 456M (6MB/8MB L2) or 820M (12MB L2)
Die Size 258 mm2 285 mm2 263 mm2 164 mm2 (6MB/8MB L2) or 214 mm2 (12MB L2)

The above chart details the specifications for the current AMD and Intel quad-core offerings, and here we see a problem. Phenom II and Core i7 are around the same die size and have similar transistor counts, yet Core i7 sells for $284 - $999 while Phenom II sells for $235 - $275. The part that Phenom II actually competes with is the Core 2 Quad Q9400 (and perhaps the Q9550; more on that later), and that's a ~36% smaller die. This is the downside to AMD's pricing strategy; while it's great for consumers it's not particularly great for AMD's profit margins. The other thing to keep in mind is that at 214 mm2 Intel has an entire line of quad-core processors that, in theory, could be moved down the price list if the price wars of 2008 were to continue into 2009.

The move to 45nm was severely needed as you can see by the table above. AMD and Intel seem to agree on the right way to build a quad-core processor today: four cores with individual L2 caches (or one shared L2 per two cores on Intel) behind a large global L3 cache. Intel, however, waited until the 45nm transition was complete to move to that sort of an architecture in order to outfit the chip with a large enough L3 cache. AMD jumped the gun early with Phenom and was forced to limit its L3 cache size to 2MB on 65nm. Finally, with the move to 45nm, Phenom II boasts a 6MB L3.

The transistor counts of Phenom II and Core i7 are surprisingly close, as are the die sizes. The two chips are designed completely differently, but the end result is similarly sized processors. Note that both Phenom II and Core i7 are too big for high volume mainstream markets; the die size would need to be around half of what it is now to address those markets. AMD and Intel will do so by introducing dual (or triple in the case of AMD) core versions at 45nm and then transitioning almost exclusively to quad-core at 32nm.

Phenom II also marks AMD's return to the >$200 CPU market. The two parts launching today are the Phenom II X4 940 and the Phenom II X4 920, priced at $275 and $235 respectively.

Processor Clock Speed Uncore Clock L2 Cache L3 Cache TDP Price
AMD Phenom II X4 940 3.0GHz 1.8GHz 2MB 6MB 125W $275
AMD Phenom II X4 920 2.8GHz 1.8GHz 2MB 6MB 125W $235
AMD Phenom 9950 2.6GHz 2.0GHz 2MB 2MB 140W $174
Index Phenom II's Secret, In Pictures
POST A COMMENT

93 Comments

View All Comments

  • poohbear - Thursday, January 08, 2009 - link

    this is fantastic news! and just when i was about to upgrade from my ancient s939 system to a C2D system, seems i might be sticking to AMD after all! thanks for review! Reply
  • PrezWeezy - Thursday, January 08, 2009 - link

    For less than $20 more the i7 920 looks like it wins in every single test by a fair margin, doesn't seem like this is really all that competitive, considering the i7 is still in the "high price" phase. I can't believe it wont drop to the $275 mark rather soon which would put the XII 940 back to the same position the original Phenom was, too little too late. Reply
  • Roland00 - Thursday, January 08, 2009 - link

    More expensive Motherboard+More expensive Ram makes i7 about 400 dollars more in cost Reply
  • strikeback03 - Friday, January 09, 2009 - link

    How you figure? By the chart on page 4, it is less than $200. Even if you go for one of the $300 motherboards, you won't see a $400 difference.

    When I built my current system, E6600/P965/2GB DDR2 cost me over $600, and that was considered a decent mid-range system. As my primary use of computing power is Photoshop, I would definitely go for i7 even if cheaper motherboards do not become available.
    Reply
  • Roland00 - Friday, January 09, 2009 - link

    It isn't quite 400 but here

    motherboard p45 vs x58 most x58 are 300 vs 100-120 for p45,
    Ram, 6 gb of ddr3 is about 200, vs 50 or 60 for 6gb of ddr2.
    For a nonstock cpu cooler you are talking 60 to 70 bucks with the i7 for it is a new socket and their is very few products for it. You can get a good cpu cooler for intel quad for 30 to 40 dollars.

    Savings about 200+140+30=370

    If you get things on sale you might be able to find 6gb ram for 150, cpu for 230, and you may be able to get the motherboard cheaper if you get one of the basic versions but you are still talking about 300 more.
    -----
    I am not saying i7 isn't worth the extra money, it is still new tech but it does show beneficial gains (on encoding, minimum frame rate on games, and overclocking) but right now the motherboards and ram is expensive.
    Reply
  • BSMonitor - Friday, January 09, 2009 - link

    You are rounding up on i7 side and rounding down on the core 2 side. It is not $50 for 6GB of DDR2. It is not only $300 for x58. I have seen them for $200. I have seen 6GB DDR3 kits for $140 too.

    It's like we are talking about bare entry into Core 2 and Phenom II, but enthusiest for i7. Why does one need 6GB to entry into i7? 3GB would be reasonable and ~$70-80.

    Phenom II is cute yes, but nothing to jump on.
    Reply
  • Roland00 - Friday, January 09, 2009 - link

    I am rounding up on the I7 side for like most people I buy things with tax (for my state charges tax on internet transactions.) In addition many people buy their equipment in stores such as fry's, microcenter, comp usa, etc.

    370 times 8.25% tax rate (my area's sales tax) is...400 dollars and 52 cents

    ------

    And no I am not overpricing the ram or similar equipment. Go to Fry's, Microcenter, or some other store and you will see the prices I listed or much higher.

    ------

    Regardless you seem to be missing the point, the original poster I was responding to was saying i7 was only 25 dollars higher, and I said that was wrong for you have to figure in the platform costs.
    Reply
  • PrezWeezy - Friday, January 09, 2009 - link

    You were right, I had forgotten about the new socket and DD3. Even so, using the parts Anandtech used, the i7 is about $187 more expensive than the PII (pun totally intended). The C2D with a Q9400 though is only $44 cheaper than the i7. Almost all of that has to do with the motherboards used here, and I'm sure you could find a combo of motherboard/CPU that would bring the price closer but that's besides the point. Reply
  • calyth - Thursday, January 08, 2009 - link

    "In theory, the AMD design made sense. If you were running a single threaded application, the core that your thread was active on would run at full speed, while the remaining three cores would run at a much lower speed. AMD included this functionality under the Cool 'n' Quiet umbrella. In practice however, Phenom's Cool 'n' Quiet was quite flawed. Vista has a nasty habit of bouncing threads around from one core to the next, which could result in the following phenomenon (no pun intended): when running a single-threaded application, the thread would run on a single core which would tell Vista that it needed to run at full speed. Vista would then move the thread to the next core, which was running at half-speed; now the thread is running on a core that's half the speed as the original core it started out on."

    Anand, read that sentence again.

    The problem isn't AMD designing a chip with broken CnQ. The problem is that Microsoft, after so many years, still can't write a scheduler. The problem persists on XP too. The thread that handles the mouse would rev up, causing the chip to switch p-state. Switching p-states takes time, and because of exclusive caching on AMD chips, when the scheduler puts the same thread on different cores, it causes the L1 & L2 to be ineffective.

    I have trouble in WinXP with CnQ on if I move my mouse, but not surprisingly, the same Phenom chip works like a chap in Linux. Because the scheduler isn't an idiot, and 1GHz is more than enough to handle mouse input.

    AMD erred in fixing a software problem in hardware. Independent p-states saved some power if only a single thread needed the speed.
    Reply
  • Zak - Thursday, January 08, 2009 - link

    Well, I hope AMD won't lose the momentum, because right now there isn't that much to celebrate: they've barely caught up with Intel's 2 years old CPU line:(

    Z.
    Reply

Log in

Don't have an account? Sign up now