E8000 Lineup and Early Overclocking Results

Intel plans to introduce no fewer than four new 45nm dual-core processors as part of its Q1 2008 Wolfdale launch. At the time of publication, the following models are scheduled for immediate availability:

  • E8200, 2.66GHz, 6MB shared L2 cache, 1333MHz FSB, maximum 8.0x multiplier
  • E8300, 2.83GHz, 6MB shared L2 cache, 1333MHz FSB, maximum 8.5x multiplier
  • E8400, 3.00GHz, 6MB shared L2 cache, 1333MHz FSB, maximum 9.0x multiplier
  • E8500, 3.16GHz, 6MB shared L2 cache, 1333MHz FSB, maximum 9.5x multiplier

Estimated street prices, although unconfirmed and subject to change, are expected to be around $299 for the E8500, $249 for the E8400 and $163 for the E8200. As you can see, each processor features a maximum multiplier - there has been no formal mention of an "Extreme Edition" dual-core processor at this time. Additionally, rumors of the impending release of an E8600 processor (presumably running at 3.33GHz with a 10x multiplier) go unconfirmed. It it becomes available, the E8600 may very well be the CPU to own as it would allow for operation at 10x400 (4GHz), a very good place to be when it comes to tuning in maximum memory performance.

Unlike the Conroe release, all processors will make use of the full 6MB shared L2 cache offered on the top-end E8500 model. Undoubtedly, a 45nm Celeron or Pentium line (or E5000/E7000 - choose your favorite naming scheme) will eventually make their way to retail. We expect these to come in at 3MB and/or 1.5MB of shared L2 cache. Based on what we have seen when it comes to 65nm Pentium E2000 and Core 2 E4000 chips, when they do arrive the 45nm variants will offer tremendous value and an amazing price/performance ratio.


Designed to run at an already fast 3.16GHz, this E8500 is just starting to stretch its legs and show its true potential with some water-cooling TLC.

We were able to overclock our E8500 sample all the way to 4.5GHz with water-cooling; what's more, we were able to demonstrate complete stability at these speeds running many hours of Prime95, a popular tool for stress-testing systems. Most X6800/X6850 owners will attest to this amazing achievement - the average overclock for top-bin 65nm CPUs falls somewhere near the 3.8 ~ 4.0GHz mark. Results such as these combined with Wolfdale's modest clock-for-clock advantage over Conroe show the prospect of 15% or more processing power when overclocking. Even though the official frequencies may not have changed significantly (yet) - a new maximum of 3.16GHz, up from 3.00GHz - this increase in overclocking headroom makes the E8500 a marvel to behold.



Our top (unstable) overclock on water is nothing short of impressive. Although we were unable to benchmark up here, future steppings may change that. The ability to POST and load Windows at 4.8GHz on water promises more to come….

A quick maximum-frequency run on water indicates the proverbial sky's the limit when it comes to overclocking the E8500. The maximum achievable frequency had more to do with our nerves than anything else. Given the voltage, our E8500 was more than happy to continue scaling higher. However, we eventually said enough is enough and called it quits - that point came when we were subjecting our poor 45nm CPU to over 1.6V, a level that could possibly require you hand over your credit card number in exchange for another CPU in no time flat. Quite simply, we believe any voltage over 1.45V is asking for trouble with 45nm processors and our conversations with Intel to date have all but confirmed our suspicions.



The E8500 is no slouch when it comes to chasing a high FSB. Of course, all of this will be for naught when Intel releases their next-generation Nehalem architecture.

Here's the obligatory high-FSB screenshot, for those that care. In case you missed it, we recently had an in-depth article on why high FSB overclocking might not really be the best approach to take when dialing in maximum system performance. Suffice it to say, our fascination with these displays of CPU or motherboard worthiness is rapidly waning. However, we are also not so stubborn as to not acknowledge the importance of high FSB potential when it comes to pushing processors with low multipliers. Our recommendation is straightforward, however: buy the model with the highest multiplier that you can possibly afford. Most motherboards (and systems) are far happier running 9x490 than 8x550.

Index So Dual-Cores are no Longer Extreme?
POST A COMMENT

45 Comments

View All Comments

  • TheJian - Thursday, March 06, 2008 - link

    Agreed. I haven't had a cpu that hasn't been heavily overclocked since like 1992 or so. All of these chips clear back a 486 100mhz ran for others for years after I sold them. My sister is still running my Athlon 1700+ in one machine. It's on all day, she doesn't even use standby...LOL (except for the monitor). It's like 6yrs old. Probably older than that. Still running fine. I think it runs at 1400mhz if memory serves (but it's a 1700+, you know amd's number scheme). Every time I upgrade I sell a used chip at like 1/2 off to a customer/relative and they all run for years. I usually don't keep them for more than 1yr but they run well past the 3yr warranty for everyone else, and I drive them hard while I have them. I'd venture to guess that most of Intel/AMD chips would last 5+ years on avg. The processes are just that good. After a few years in a large company with 600+ pc's I realized they just don't die. We sent them to schools (4-5yr upgrade schedule) before they died or sold them to employees for $50-100 as full pc's! I think I saw 3 cpu deaths in 2.5yrs and they were dead weeks after purchase (p4's...presshots..LOL). Don't even get me started on the hard drive deaths though...ROFL. 40+/yr. Those damn Dell SFF's get hot and kill drives quick (not to mention the stinking plastic, smells burnt all day). You're lucky to get to warranty on those. I digress... Reply
  • mindless1 - Wednesday, March 05, 2008 - link

    Yes, the author is completely wrong about overclocking. Overclocking (within sane bounds like not letting the processor get hotter than you'd want even if it weren't overclocked), INCREASES the usable lifespan, not decreases.

    The author has obviously not had much experience overclocking, for example there are still plenty of Celeron 300MHz processors that ran at 450+MHz for almost ten years then were retired due to beyond beyond their "usable" lifespan, just slow by then modern standards. Same for Coppermine P3 and Celeron, Athlon XP, take your pick there are almost never examples of a processor that fails prematurely that had ran stable for a couple years, unless it was due to some external influence like the heatsink falling off or motherboard power circuit failure.

    Overclocking really isn't a gamble - unless you don't use common sense. 2-3 years is a lifespan you'd get if you were doing something extreme, not a modest voltage increase using a heatsink that keeps it cool enough.

    I suggest the article page about "The Truth About Processor Degradation" should just be deleted, it's not just misleading but mostly incorrect. Here's the core of the problem:

    "As soon as you concede that overclocking by definition reduces the useful lifetime of any CPU, it becomes easier to justify its more extreme application."

    Absolutely backwards. Overclocking does not by definition nor by any other nonsensical standard, reduce the useful lifetime of CPUs. It increases the useful lifetime by providing more performance so that processor remains at the required performance levels (which escalate) for a longer period, then eventually is retired before failing in most cases. It is wrong to think that if an overclocked processor would last 18 years without overclocking and 12 with modest overclocking, that this suddenly means "it becomes easier to justify it's more extreme application." It means you can do something sanely and have zero problems or use random guesses and do something "extreme" and then you will find a problem. Author is completely backwards.

    "Too many people believe overclocking is "safe" as long as they don't increase their processor core voltage - not true."

    There is no evidence of this. Show us even one processor that failed from increase in clock speed within it's default voltage and within it's otherwise viable lifespan.

    "Frequency increases drive higher load temperatures, which reduces useful life. "

    Wrong. While it is true that a higher frequency will increase temps, it is not true that a higher temp (so long as it's not excessive) will cause the processor to faill within it's "useful life". On the contrary you have extended the useful life by increasing the performance. Millions upon millions of overclockers know this, a moderate overclock (or even a lot, providing the vcore isn't increased significantly) has no effect, it's always some other portion of the system that fails first from old age, generally motherboard or PSU. It might be fair to say that overclocking, through use of more current, is more likely to reduce the viable lifespan of the motherboard or PSU, or actually both long before the processor would fail.

    Intel doesn't warranty overclocking because it is definitely possible to make a mistake though ignorance or ineptitude, and because their price model is based on speed/performance. It is not based upon evidence that experienced overclockers using good judgement will end up with a processor that failed within 8 years, let alone 3!



    It also goes a long way to understanding why Intel has a strict "no overclocking" policy when it comes to retaining the product warranty. Too many people believe overclocking is "safe" as long as they don't increase their processor core voltage - not true. Frequency increases drive higher load temperatures, which reduces useful life.

    Reply
  • TheJian - Thursday, March 06, 2008 - link

    AMD has recently proved this, and even Intel to some extent with P4's. AMD's recent chips have been near max, with almost no overclocking room (same for quite a few models of P4's) and they lived long lives. Proving you can run at almost max at default voltages with no worries.

    Where does the author get his data? Just as you said. Prove it. I think Intel is tire of us overclocking the crap out of their great cores. With AMD not having ANY competitor they end up with all chips being able to hit 4ghz but having to mark them at 3.16ghz. What do we do? Overclock to near max and that pisses them off. :) Make a few phone calls to some people and tell them write a "10minute's of overclocking and your cpu blows up" article or you won't get our next engineering samples to test :) Maybe I'm wrong but it's sure suspicious. Recommending anything with Intel IGP for HTPC applications is might suspicious also. Yes, I read tech-report too. Also the same is on toms hardware! Check out this FIRST SENTENCE of their 3/4/08 article on 780 chipset from AMD:
    "With today's introduction of its new 780G chipset, AMD is finally enabling users to build an HTPC or multimedia computer for HDTV, HD-DVD or Blu-ray playback that doesn't require an add-in graphics card. (AMD already included HDCP support and an HDMI interface in its predecessor chipset, the 690G.) The northbridge chip of the new 780G chipset also features an integrated Radeon HD3200 graphics unit that can decode any current high-definition video codec. As a result, CPU load is decreased to such a degree that even a humble AMD Sempron 3200+ is sufficient for HD video playback. Also, while Intel's chipsets get more power-hungry with every generation, AMD's newest design was designed with the goal of reducing power consumption."
    http://www.tomshardware.com/2008/03/04/amd_780g_ch...">http://www.tomshardware.com/2008/03/04/amd_780g_ch...

    OK, so for the first time we can build an HTPC without an add-in graphics card. Translation - IT can't be done on Intel! Ok, even a LOWLY SEMPRON 3200+ cuts it with this chipset! Translation - No need for an Intel Core2 2.66ghz-2.83ghz dual core! No need for a dual core at all. Before this chipset it took an A64 6400 DUAL CORE (on AMD's old 690G chipset and that chipset smokes Intels IGP) and still was choppy. Now they say a 1.8ghz SINGLE CORE SEMPRON only shows 63% cpu utilization WITHOUT choppy on the 780G! On top of that it will save you money while running. Even the chipset is the BEST EVER in power use. They openly tell you how BAD Intel's chipsets are at 90nm. But Anandtech wants us to buy this crap? BLU-RAY finally hit it's limit on a 1.6ghz SEMPRON at tomshardware. They hit 100% cpu in a few spots. I hope Anandtech's 780G chipset review sets this record straight. They'd better say you should AVOID INTEL like the plague or something is FISHY in HTPC/Intel/Anandtech world.

    Don't get me wrong Intel has the greatest chips now for a year, I'm personally waiting on the E8400 to hand me down my E4300 to my dad (with runs at 3.2hz with ease). But call a spade a spade man. Intel sucks in HTPC. SERIOUSLY SUCKS after early this week!
    Reply
  • Quiet1 - Wednesday, March 05, 2008 - link

    Kris exposes his personal preferences when he writes... "While there is no doubt that the E8500 will excel when subjected to even the most intense processing loads, underclocked and undervolted it's hard to find a better suited Home Theater PC (HTPC) processor. For this reason alone we predict the E8200 (2.66GHz) and E8300 (2.83GHz) processors will become some of the most popular choices ever when it comes to building your next HTPC."

    But what are you going to plug that CPU in to??? An Intel motherboard with Intel integrated graphics? Look at the full picture and you'll see that if you're building an HTPC, the CPU just has to be decent enough to get the job done... the really important thing is your IG performance on your chipset.


    The Tech Report: “AMD's 780G chipset / Integrated graphics all grown up”
    http://www.techreport.com/articles.x/14261/1">http://www.techreport.com/articles.x/14261/1
    “The first thing to take away from these results is just how completely the 780G's integrated graphics core outclasses the G35 Express. Settings that deliver reasonably playable framerates on the 780G reduce the G35 to little more than an embarrassing slideshow.”

    "Between our integrated graphics platforms, the 780G exhibits much lower CPU utilization than the G35 Express. More importantly, the AMD chipset's playback was buttery smooth throughout. The same can't be said for the G35 Express, whose playback of MPEG2 and AVC movies was choppy enough to be unwatchable."


    Reply
  • sprockkets - Thursday, March 06, 2008 - link

    That's the problem with Intel's platform, at least without an add in card. I thought the new nVidia chipset would change all that, then I found out they are only using a single channel of ram, how retarded is that?

    Then, for now, having the ability to run the add in card for games but then shut it down afterwards when you do not need it is sweet. I would wait though for the 8200 chipset since i know it will be easier to get working in Linux but may go still for the 780G for Windows Vista.
    Reply
  • HilbertSpace - Wednesday, March 05, 2008 - link

    I read that article too, and thought the same thing. Reply
  • Atreus21 - Wednesday, March 05, 2008 - link

    I wish to hell Intel would quit using those penises for marketing their architecture shrinks. Every time I try and read it I'm like, "Ah!"

    One would think they're trying to say something.
    Reply
  • Atreus21 - Wednesday, March 05, 2008 - link

    I mean, the least they could do is not make it flesh colored. Reply
  • frombauer - Wednesday, March 05, 2008 - link

    I'll finally upgrade my x2 3800+ (@2.5GHz) very soon. Question is, for gaming mostly, will a high clocked dual core suffice, or a lower clocked quad will be faster as games become more multi-threaded? Reply
  • 7Enigma - Thursday, March 06, 2008 - link

    I think it really depends on how long you plan on keeping the new system. Since your current rig is a couple years old, you fall into the category of 90% of us. We don't throw out the mobo and cpu every time a new chip comes out, we wait out a couple generations and then rebuild. I'm running at home right now on an A64 3200+ (OC'd to 2.5GHz) so I don't even have dual-core right now.

    My plan is that even though the duals offer potentially better gaming performance right now (gpu obviously still being the caveat), since I only rebuild every 3-4 years I need something to be more futureproof than someone who upgrades every year. It would be great to say I'll get a fast dual-core today and next year get a quad, but 4 out of 5 times the upgrade would require a new mobo anyway so I'd rather wait another month or two, get a 45nm quad and the 9800 when it comes out.

    My biggest dissapointment with my last build was NOT jumping on the "new" slot and instead getting an AGP mobo. That is what has really hampered my gaming the last year or so. Once the main manufacturers stopped producing AGP gfx cards my upgrade path stopped cold. If I could go back to jan 05 I would have spent the extra $50-100 on a mobo supporting PCI-X, which would have allowed me to upgrade past my current 6800GT and keep on gaming. Right now I have a box of games I've never played (gifts from Christmas) because my system can't even load them.

    So in short, the duals are right NOW the better buy for gaming, but I'd hedge my bets and splurge on a 45nm quad when they come out. In all honesty unless you play RTS' heavily, or we have some crazy change of mindset by game producers (not likely) the gpu will continue to be the bottleneck at anything above 17-19" LCD resolutions. I actually just got a really nice 19" LCD this past Christmas to replace my aging 19" CRT and I did it for a very good reason. All it takes is to see a game like Crysis and realize that we may not be ready yet for the resolutions that 20/22/24 display, unless we have the cash to burn on top of the line components and upgrade at a much more frequent rate.

    2cents.
    Reply

Log in

Don't have an account? Sign up now