A Lesson in User Failure: Investigating the Serial ATA Connector

Something you learn quickly in this industry is that working as a technology journalist does not make you immune to computer problems or the laws of physics that can be at the root of them. Just by doing our work we tend to break things now and then; overclocked processors become keychains, overheated video cards become surgical knives (make no mistake, PCB is a very capable blade), and gadgets become interesting conversational pieces. Much of this we'll make a passing observation on, but otherwise we don't talk about failures too often.

Every once in a while though, we will break something in a process that's genuinely interesting. Failure is its own reward, it teaches us how to not do something or do something better than we did before. And in those handful of cases, we like to get to the bottom of what went wrong, what we did wrong, and what can be done to avoid the issue in the future. In these cases, you the reader can receive some of our imparted knowledge without needing to also experience the pain and cost of the lesson.

So what have we managed to break this time that we find so interesting that it's worth writing about? We made what is in fact a very common mistake, and nearly turned a week-old hard drive in to a new source of magnets by breaking the Serial ATA connector on the drive. It's the kind of problem that sounds rather trivial, but due to the construction of many SATA hard drives, breaking the SATA connector is a death sentence for the drive because it's impractical-to-impossible to replace it, as it's part of the circuit board if not also part of the drive itself.

It's only appropriate to preface this by saying that we're not dissatisfied with the SATA specification, rather we find ourselves in an interesting situation. The thinner cable is far easier to route in a cramped case than a Parallel ATA cable, it doesn't impede airflow like a ribbon cable, and getting rid of hooking two devices to a single cable was a long-overdue change.

But - and we know we're not alone in this thought - SATA cables and connectors aren't quite as robust as the old PATA design. PATA cables could be worked in to rather impossible situations as the connector was extremely snug fitting, and the cable itself was extremely flexible when it needed to be folded longitudinally; it was hard to set up but also hard to break. We'll still take a SATA setup any day of the week, but we've come to the realization we can't abuse SATA setups like we could PATA setups.

As a consequence, today we'll share with you what we found out in dealing with our problem. What did we do wrong? What can we do about it? And just why is the SATA connector designed the way it is anyhow? Read on to find out.

SATA Anatomy & Failure Anatomy
Comments Locked

62 Comments

View All Comments

  • jmvillafana - Friday, January 18, 2008 - link

    It happened to me five years ago with the first motherboard I had with SATA option. Conector broke on the motherboard side. Having two HDD and two connectors I had no options, found the plastic piece and mended as you did. With luck and care, the board worked for four and a half years. A short life for a system, I never found out if the crippled connector shortened the life of the board. I actually unhooked and hooked the connector a few times through this time. My new systems have SATA connectors and I allways use latched ones.
  • bobbozzo - Friday, January 18, 2008 - link

    Due to the lack of space at the bottom of the p182 case, I put my 2 hard drives in the middle bay, above the floppy bay.
    I also moved the fan from the bottom (the PS has a fan, why should it need another?), to the front of the case in front of those 2 drives... they stay nice and cool now.

    I broke a Molex power connector on a Deathstar once as it was too tight, and it the pins separated from the plastic and broke off the motherboard, from pulling the Molex connector STRAIGHT out as designed.
  • JonathanYoung - Friday, January 18, 2008 - link

    Hi Mr. Smith,

    I would like to provide some constructive criticism on your article. There are some instances where you use "in to" when you should be using "into." For example: "that have shaped the SATA connector in to what we see today."

    I am not a grammar expert but this is something that caught my eye a couple of times and I thought you'd like to know.

    As for the content of the article, I think it is an excellent subject and something that many PC power users can relate to.

    Thank you!

    Jonathan Young
  • kilkennycat - Friday, January 18, 2008 - link

    For example, take a look at the Antec P160 design and the hard-disk cage in that design, (including the hard-disk shock mounts). The hard-disks load sideways into that cage. All connectors are fully exposed for cable installation. And with the huge front-slots in the P160 (filtered) and a decent intake fan, the hard-disks are very nicely cooled. That 'up-side-down' P18x design with the power-supply at the bottom also has the doubtful virtue of requiring extra-long power-supply cables. And how many motherboards come with a set of right-angle SATA connectors anyway ?

    Pity the P160 seems to be out-of-production. Great that I have a new one stored in my attic for my next PC build. The 2 active thermal probes in the P160 with the associated front-panel display are a huge bonus in these days of hot CPUs and hot graphics cards. No need to run some silly temperature-monitoring program in the background. The P160 loads the motherboard on a tray... a very handy feature indeed when installing or troubleshooting. However, the tray depth is ATX --- a few of the latest 'way-out' enthusiast motherboards (e.g Asus "Striker") have a depth exceeding the ATX spec that would short out on the lip of the tray and collide with the tray fasteners.
  • peternelson - Friday, January 18, 2008 - link


    Enjoyed the description of your experiences and it serves a useful reminder to take care with internal SATA cables.

    I feel it would also be worthwhile to mention ESATA (the official external SATA standard) which has redesigned the connectors in view of external use. In particular external connectors will tend to get more abuse (strain of devices being relocated, re-matings, bending).

    Since the internal SATA connector was known to have a potential to damage the device, rather than the cable when it snapped, the ESATA connector was redesigned so that ideally, when something breaks it is the cable connector (part of your relatively cheap cable) rather than the device connector (so you don't write off your expensive drive array).

    Although some vendors tried to take SATA externally using the original connectors designed for internal use, the official external SATA specification addresses that problem deliberately (as well as better electrical noise immunity).

    Thanks for the article.
  • Lonyo - Friday, January 18, 2008 - link

    I managed to break the plastic bit on a 200GB hard drive by accidentally pressing the cable down while working on the innards.
    Luckily I was able to sort out a temp solution and get stuff off the drive, but that involved tape and cardboard, and currently the drive sits unused in a box.
    Early SATA connectors were a giant pain. I've also had numerous occasions when the cable has come loose from either the motherboard or hard drive, due to cramped conditions and the relatively inflexible cables and poor retention at both ends.
  • Heidfirst - Friday, January 18, 2008 - link

    I have had exactly the same experience as jasonnovak.
    I'm sure that I didn't put undue stress on the connector but nevertheless the tongue came away stuck in the cable.
    On my drive it loooked to be held in place by a little tab/slot presumably with some adhesive - obviously not enough or it failed.
    Anyway, the drive still works but I can only use it with that 1 cable so it's now hotglued together.
  • AlexWade - Friday, January 18, 2008 - link

    When SATA first came out, I bought me a 250GB Seagate. Back when I bought it, 250GB was expensive because perpendicular recording wasn't even dreamed about. Anyway, while shifting it around, I broke the connector on the hard drive. Fortunately for me, I never removed the connector. I jury-rigged something. It ain't pretty, but it still works to this day. I found lying around one of those paint mixing paddles you get for free (and which quite often my dad used on me, balsa wood never hurt so much) and wedged it under the hard drive. It worked. And that hard drive is still a functioning member of society.
  • jay401 - Friday, January 18, 2008 - link

    quote:

    does not make you immutable to computer problems or the laws of physic


    I believe "immutable" means unchanging, and you want "immune" instead.
  • Starcub - Monday, August 10, 2009 - link

    How did you get the quote feature to work? I get a pop up window asking me to type in the quoted text, which I do. When I click ok, the text box disappears, and no quote is inserted in my post...

    At least that makes me immutable to misquoting people ;P

Log in

Don't have an account? Sign up now